自然科學領域
目次

壹、基本理念.. 1

貳、課程目標.. 1

參、時間分配與科目組合.. 3

肆、核心素養.. 4

伍、學習重點.. 8

一、國民小學教育階段學習重點.................................... 11

（一）學習表現... 11

（二）學習內容... 15

二、國民中學教育階段學習重點.................................... 21

（一）學習表現... 21

（二）學習內容... 22

三、普通型高中必修課程學習重點.................................. 31

（一）學習表現... 31

（二）學習內容... 33

四、普通型高中加深加廣選修課程學習重點.......................... 42

（一）學習表現... 42

（二）學習內容... 44

陸、實施要點.. 54

一、課程發展... 54

二、教材編選... 54

三、教學實施... 55

四、教學資源... 56

五、學習評量... 57

柒、附錄.. 58

附錄一：自然科學領域學習重點與核心素養呼應表參考示例........... 58

附錄二：議題適切融入領域課程綱要.................................. 70

附錄三：總綱核心素養與自然科學領域課程綱要各教育階段學習表現關聯表

附錄四：學習內容說明... 91
壹、基本概念

科學源起於人類對生活周圍的好奇或需要。人類觀察研究自然界各種現象與變化，巧妙地運用科學來解決問題、適應環境及改善生活，科學在文明演進過程中持續累積，成為文化重要內涵。生活在現代，我們的周遭充斥著不斷創新的科技產品、紛至沓來的各項資訊，以及因資源開發而衍生出的環境生態問題。因此我們的國民更需要具備科學素養，能了解科學的貢獻與限制、能善用科學知識與方法、能以理性積極的態度與創新的思維，面對日常生活中各種與科學有關的問題，能做出評論、判斷及行動。同時，我們也需要培養未來的科學人才，為人類文明與社會經濟發展奠下堅實的基礎。

科學的學習方法，應當從激發學生對科學的好奇心與主動學習的意願為起點，引導其從既有經驗出發，進行主動探索、實驗操作與多元學習，使學生能具備科學核心知識、探究實作與科學論證溝通能力。各學習階段應重視並貫徹「探究與實作」的精神與方法，提供學生統整的學習經驗，並強調跨領域/科目間的整合，以綜合理解運用自然科學領域七項跨科概念（物質與能量、構造與功能、系統與尺度、改變與穩定、交互作用、科學與生活、資源與永續性），強化上述目標，於高級中等學校教育階段增列自然科學探究與實作課程內容，佔自然科學領域部定必修學分數三分之一。

科學的學習內容必須考量當今科學知識快速成長，以及科學、科技與其他領域/科目相互滲透融合等事實。在課程教材的組織與選擇要重視縱向的連貫與橫向的統整。根據各學習階段學生的特質，選擇核心概念，再透過跨科概念與社會性科學議題，讓學生經由探究、專題製作等多元途徑獲得深度的學習，以培養科學素養。所以一個有科學素養的公民，應具備科學的核心概念、探究能力及科學態度，並且能初步了解科學本質。

因此，在學習自然科學的過程中，學生應培養對自然科學的興趣，成為自發主動的學習者，以符合「自發」的理念。在參與探究與實作的過程中，學生應積極與他人及環境互動，並能廣泛的運用各種工具達到有效的溝通，以符合「互動」的理念。透過對科學本質的了解，學生應學習欣賞大自然之美，善用並珍惜自然資源，以符合「共好」的理念。

貳、課程目標

十二年國民基本教育自然科學領域課程在前述基本理念引導下，訂定課程目標如下：

一、啟發科學探究的熱忱與潛能：使學生能對自然科學具備好奇心與想像力，發揮理性思維，開隸生命潛能。

二、建構科學素養：使學生具備基本的科學知識、探究與實作能力及科學態度，能於實際生活中有效溝通、參與公民社會議題的決策及問題解決，且對媒體所報導的科學相關內容能理解並反思，培養求真求實的精神。

三、奠定持續學習科學與運用科技的基礎：養成學生對科學正向的態度、學習科學的興趣，
以及運用科技學習與解決問題的習慣，為適應科技時代之生活奠定良好基礎。

四、培養社會關懷和守護自然之價值觀與行動力：使學生欣賞且珍惜大自然之美，更深化為愛護自然、珍愛生命及惜取資源的關懷心與行動力，進而致力於建構理性社會與永續環境。

五、為生涯發展做準備：使學生不論出於興趣、生活或工作所需，都能更進一步努力增進科學知能，且經由此階段的學習，為下一階段的生涯發展做好準備。
<table>
<thead>
<tr>
<th>教育階段</th>
<th>學習階段</th>
<th>年級</th>
<th>類別</th>
</tr>
</thead>
<tbody>
<tr>
<td>教育階段</td>
<td>學習階段</td>
<td>年級</td>
<td>類別</td>
</tr>
<tr>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>第四學習階段</td>
<td>第五學習階段</td>
</tr>
<tr>
<td>三</td>
<td>四</td>
<td>五</td>
<td>六</td>
</tr>
</tbody>
</table>

必修

<table>
<thead>
<tr>
<th></th>
<th>3節/週</th>
<th>3節/週</th>
<th>12學分</th>
</tr>
</thead>
</table>

加深加廣選修

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>32學分</th>
</tr>
</thead>
</table>

備註

1. 國民小學教育階段自然科學以領域整合方式架構課程，銜接第一學習階段生活課程，第二、三學習階段自然科學領域學習節數為每週3節。
2. 國民中學教育階段（七至九年級）自然科學領域學習節數為每週3節，三年共六學期，教科書編撰及教學節數分配，依以下比例為原則：生物6/18、理化10/18、地球科學2/18，並且每學期至少包含一個跨科單元，實施跨科主題整合的探究與實作學習。
3. 普通型高級中等學校自然科學領域部定必修總學分數為12學分，應含三分之一跨科目之主題式探究與實際課程內容。內容規劃如下：

<table>
<thead>
<tr>
<th>領域</th>
<th>目的</th>
<th>學分</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然科學</td>
<td>部定必修</td>
<td>2-4</td>
<td>學分應含三分之一跨科目之主題式探究與實際課程內容</td>
</tr>
<tr>
<td>物理</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>化學</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地球科學</td>
<td>2-4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. 普通型高級中等學校加深加廣選修學分數為32學分，包含選修物理10學分、選修化學10學分、選修生物8學分、選修地球科學4學分，內容規劃如下：

<table>
<thead>
<tr>
<th>科目</th>
<th>課程名稱</th>
<th>學分</th>
</tr>
</thead>
<tbody>
<tr>
<td>選修物理</td>
<td>力學一</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>力學二與熱學</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>波動、光及聲音</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>電磁現象一</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>電磁現象二與量子現象</td>
<td>2</td>
</tr>
<tr>
<td>選修化學</td>
<td>物質與能量</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>物質構造與反應速率</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>化學反應與平衡一</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>化學反應與平衡二</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>有機化學與應用科技</td>
<td>2</td>
</tr>
<tr>
<td>選修生物</td>
<td>生命的起源與植物體的構造與功能</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>動物體的構造與功能</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>生態、演化及生物多樣性</td>
<td>2</td>
</tr>
<tr>
<td>選修地球科學</td>
<td>地質與環境</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>大氣、海洋及天文</td>
<td>2</td>
</tr>
</tbody>
</table>
《十二年國民基本教育課程綱要總綱》中強調培養以人為本的「終身學習者」，擬訂「自主行動」、「溝通互動」、「社會參與」等三大面向，作為各教育階段間的連貫以及各領域／科目間統整的主軸。自然科學領域核心素養中注重觀察、邏輯思考及推理判斷，學生以此為據進而習得知識、規劃及操作實驗，以達解決問題能力的培養等內涵，符合「自主行動」之「身心素質與自我精進」、「系統思考與解決問題」及「規劃執行與創新應變」之項目。而強調學生運用圖表表達、呈現發現成果、適當使用媒體（網路、書刊等）和科技資訊、欣賞科學之美等項內涵，符合「溝通互動」之「符號運用與溝通表達」、「科技資訊與媒體素養」及「藝術涵養與美感素養」之項目。至於培養學生與他人合作學習探究科學，進而主動關心環境公共議題與發展愛護地球環境的情操，符合「社會參與」之「道德實踐與公民意識」、「人際關係與團隊合作」及「多元文化與國際理解」之項目。考量自然科學核心素養內涵具有多元性與獨特性，表內各項具體內涵，在運用上與其他項之核心素養仍具有彈性調整及整合應用的方式。各項自然科學領域核心素養說明詳見下表。

<table>
<thead>
<tr>
<th>總綱核心素養面向</th>
<th>總綱核心素養項目</th>
<th>總綱核心素養項目說明</th>
<th>自然科學領域核心素養具體內涵</th>
</tr>
</thead>
<tbody>
<tr>
<td>自主行動</td>
<td>A1</td>
<td>A1身心素質與自我精進</td>
<td>自-E-A1 能運用五官，敏銳的觀察周遭環境，保持好奇心、想像力持續探索自然。</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>A2系統思考與解決問題</td>
<td>自-E-A2 能運用好奇心及想像能力，從觀察、閱讀、思考獲得的資訊或數據中，提出適合科學探究的問題或解釋資料，並能依據已知的科學知識、科學概念及資料。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>國民小學教育（E）</th>
<th>國民中學教育（J）</th>
<th>普通型高級中等學校教育（S-U）</th>
</tr>
</thead>
<tbody>
<tr>
<td>自-E-A2 能運用好奇心及想像能力，從觀察、閱讀、思考獲得的資訊或數據中，提出適合科學探究的問題或解釋資料，並能依據已知的科學知識、科學概念及資料。</td>
<td>自-J-A2 能將所習得的科學知識，連結到自己觀察到的自然現象及實驗數據，學習自我或團體探索證據、回應多元觀點，並能對問題、方法、資訊或數據。</td>
<td>自-S-U-A2 能從一系列的觀察、實驗中取得自然科學數據，並依據科學理論、數理演算公式等方法，進行比較與判斷科學資料或方法及程序上的合理性，</td>
</tr>
<tr>
<td>A3 规劃執行 與 創新應變</td>
<td>自E-A3</td>
<td>具備規劃及執 行計畫的能 力，並試探與 發展多元專業 知能、充實生 活經驗，發揮 創新精神，以 因應社會變 遷、增進個人 的彈性適應 力。</td>
</tr>
<tr>
<td>B1 符號運用 與 溝通表達</td>
<td>自E-B1</td>
<td>能分析比較、製作 圖表、運用簡單數 學等方法，整理已 有的自然科學資 訊或數據，並利用 較簡單形式的口 語、文字、影像、 繪圖或實物，科學 名詞、數學公式、 模型等，表達探究 之過程、發現或成 果。</td>
</tr>
<tr>
<td>B2 科技資訊 與 媒體素養</td>
<td>自E-B2</td>
<td>能了解科技及媒 體的運用方式，並 從學習活動、日常</td>
</tr>
<tr>
<td>總綱核心素養方向</td>
<td>總綱核心素養項目</td>
<td>總綱核心素養項目說明</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>倫理及媒體識讀的素養，伴能分析、思辨、批判人與科技、資訊及媒體之關係。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>經驗及科技運用、自然環境、書刊及網路媒體等，察覺問題或獲得有助於探究的資訊。</td>
<td>習活動、日常經驗及科技運用、自然環境、書刊及網路媒體中，培養相關倫理與分辨資訊之可信程度及進行各種有計畫的觀察，以獲得有助於探究和問題解決的資訊。</td>
<td></td>
</tr>
<tr>
<td>具備藝術感知、創作與鑑賞能力，體會藝術文化之美，透過生活美學的省思，豐富美感體驗，培養對美善的人事物，進行賞析、建構與分享的態度與能力。</td>
<td>自-E-B3</td>
<td>自-J-B3</td>
</tr>
<tr>
<td>透過五官知覺觀察周遭環境的動植物與自然現象，知道如何欣賞美的事物。</td>
<td>透過欣賞山川大地、風雲雨露、河海大洋、日月星辰，體驗自然美。</td>
<td>透過了解科學理論的簡約、科學思考的嚴謹與複雜自然現象背後的規律，學會欣賞科學的美。</td>
</tr>
<tr>
<td>具備道德實踐的素養，從個人到社會，循序漸進，養成社會責任感及公民意識，主動關注公共議題並積極參與社會活動，關懷自然生態與人類永續發展，而展現知善、樂善與行善的品德。</td>
<td>自-E-C1</td>
<td>自-J-C1</td>
</tr>
<tr>
<td>培養愛護自然、珍愛生命、惜取資源的關懷心與行動力。</td>
<td>從日常學習中，培養關心自然環境相關公共議題，尊重生命。</td>
<td>培養主動關心自然相關議題的社會責任感與公民意識，並建立關懷自然生態與人類永續發展的自我意識。</td>
</tr>
<tr>
<td>具備友善的人際情懷及與他人生建立良好的互動關係，並發展與人溝通</td>
<td>自-E-C2</td>
<td>自-J-C2</td>
</tr>
<tr>
<td>透過探索科學的合作學習，培養與同儕溝通表達、團隊合作及和諧相</td>
<td>透過合作學習，發展與同儕溝通、共同參與、共同執行及共同發</td>
<td>能從團體探究討論中，主動建立與同儕思考辯證、溝通協調與</td>
</tr>
<tr>
<td>總綱核心素養面向</td>
<td>總綱核心素養項目</td>
<td>項目說明</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>國民小學教育（E）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>協調、包容異己、社會參與及服務等團隊合作的素養。</td>
</tr>
<tr>
<td>C3多元文化與國際理解</td>
<td>透過環境相關議題的學習，能了解全球自然環境的現況與特性及其背後之文化差異。</td>
<td>自-E-C3 透過環境相關議題的學習，能了解全球自然環境的現況與特性及其背後之文化差異。</td>
</tr>
</tbody>
</table>

具備自我文化認同的信念，並尊重與欣賞多元文化，積極關心全球議題及國際情勢，且能順應時代脈動與社會需要，發展國際理解、多元文化價值觀與世界和平的胸懷。 自-E-C3 透過環境相關議題的學習，能了解全球自然環境的現況與特性及其背後之文化差異。 透過環境相關議題的學習，能了解全球自然環境具有差異性與互動性，並能發展出自我文化認同與身為地球公民的價值觀。 能主動關心全球環境議題，同時體認維護地球環境是地球公民的責任，透過個人實踐，建立多元價值的世界觀。
伍、學習重點

基於培養科學素養之基本理念與課程目標，本領域學習重點內涵如下：一、提供學生探究學習、問題解決的機會，並養成相關知能的科學探究能力；二、協助學生了解科學知識產生方式，養成應用科學思考與探究習慣的科學的態度與本質；三、引導學生學習科學知識的核心概念。藉由此三大內涵的實踐，培育十二年國民基本教育全人發展目標中的自然科學素養。

本領域課程中「學習表現」與「學習內容」兩者關係至為密切、互為表裡。前者為預期各學習階段學生面對科學相關問題時，展現的科學探究能力與科學態度之學習表現。後者則展現本領域學生，認識當前人類對自然界探索所累積的系統性科學知識，亦是作為探究解決問題過程中必要的起點基礎。自然科學課程應引導學生經由探究、閱讀及實作等多元方式，習得科學探究能力、養成科學態度，以獲得對科學知識內容的理解與應用能力。

自然科學領域的學習重點根據學生身心發展特性，進行十二年縱向連貫的規劃，詳見表一「各學習階段學生的自然科學學習特性」。學習表現包括科學認知、探究能力及科學的態度與本質，詳見表二「學習表現架構表」。學習內容涵蓋三個主要課題，包括「自然界的組成與特性」、「自然界的現象、規律及作用」及「自然界的永續發展」，詳見表三「學習內容架構表」。

另外，「自然科學領域學習重點與核心素養呼應表參考示例」（詳見附錄一）乃為使學習重點與核心素養能夠相互呼應，且透過學習重點落實本領域核心素養，並引導跨領域/跨科目的課程設計，增進課程發展的嚴謹度。而「議題適切融入領域課程綱要」（詳見附錄二）乃為豐富本領域的學習，促進核心素養的涵育，使各項議題可與自然科學領域的學習重點適當結合。

表一 各學習階段學生的自然科學學習特性

<table>
<thead>
<tr>
<th>學習階段</th>
<th>認知能力描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>第二學習階段</td>
<td>本階段課程主要目標在於引發興趣，故著重觀察與親身體驗。學生能透過想像力與好奇心探索科學問題，並能初步根據問題特性，操作適合學習階段的物品與器材，以進行自然科學實驗。學生能測量與計算自然科學數據，並利用較簡單的方式描述其發現或成果。</td>
</tr>
<tr>
<td>第三學習階段</td>
<td>本階段課程除透過具體操作經驗外，應烘培學生運用思考能力的機會，亦應延續具體操作，提供學生閱讀科普文章之機會。學生能根據觀察、閱讀、思考所得的資訊或數據，提出自己的看法或解釋資料，並能根據科學資料，簡單了解其中的因果關係，進而理解科學事實會有其相對應的證據或解釋方式。利用簡單形式的口語、文字、影像、繪圖、模型、實物與科學名詞等，表達其發現或成果。</td>
</tr>
<tr>
<td>第四學習階段</td>
<td>本階段課程由具體操作切入後，引進抽象思考連結具體操作。學生能提出問題、形成假說、設計簡易實驗、蒐集資料、繪製圖表、提出證據與結論等科學探究與運算等科學基本能力。學生學習從日常生活經驗中找出問題，並善用生活週遭的物品、器材儀器、科技設備及</td>
</tr>
</tbody>
</table>
學習階段 | 認知能力描述
---|---
第五學習階段（必修） | 資源，合作規劃可行步驟並進行自然科學探究活動，以培養分析、評估與規劃、回應多元觀點之基本能力。能操作適合學習階段的科技設備與資源，並分辨資訊之可靠程度及合法應用，以獲得有助於探究和問題解決的資訊。

第五學習階段（加深加廣選修） | 本階段課程可較大幅放入微觀、運算與理論推導的層次，並建立科學模型的系統性思考方式。學生學習從日常生活經驗、科學報導或實作中找出問題，根據問題特性、設備資源、期望之成果等因素，運用相對的科學模型、理論與儀器等，進行自然科學探究活動，進而發表探究的成果與提出合宜的問題解決方案。並能以合乎邏輯的方式描述自然科學活動的主要特徵、方法、發現、價值和限制，進而透過討論理解同儕的探究過程和結果，且提出合乎邏輯的解釋或意見。

表二 學習表現架構表

<table>
<thead>
<tr>
<th>項目</th>
<th>子項</th>
<th>第1碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學認知</td>
<td>對應相關學習內容，區分記憶、了解、應用、分析、評鑑、創造六個層次。</td>
<td></td>
</tr>
<tr>
<td>探究能力</td>
<td>思考智能（t）
想像創造（i）
推理論證（r）
批判思辯（c）
建立模型（m）</td>
<td>ti
tr
tc
tm</td>
</tr>
<tr>
<td></td>
<td>問題解決（p）
觀察與定題（o）
計劃與執行（e）
分析與發現（a）
討論與傳達（c）</td>
<td>po
pe
pa
pc</td>
</tr>
<tr>
<td>科學的態度與本質</td>
<td>培養科學探究的興趣（ai）
養成應用科學思考與探究的習慣（ah）
認識科學本質（an）</td>
<td>ai
ah
an</td>
</tr>
</tbody>
</table>

備註1：學習表現編碼方式
1. 第1碼：選擇以項目與子項具代表性之小寫英文字母表示，詳見上表以粗體呈現之英文字母，例如：思考智能項目下的想像創造子項，其代碼即為ti。
2. 第2碼：第二、三學習階段（國民小學教育階段三至四年級、五至六年級）分別以II、III表示；第四學習階段（七至九年級，國民中學教育階段）以IV表示；第五學習階段（十至十二年級，高級中等學校教育階段）則以Vc表示普通型高級中等學校必修，以Va表示普通型高級中等學校加深加廣選修。
3. 第3碼：阿拉伯數字為流水號。
備註 2：各學習階段科學認知，由教學者根據各學習階段學習內容、學生特性及教學目標等擬定之。

表三 學習內容架構表

<table>
<thead>
<tr>
<th>課題</th>
<th>跨科概念</th>
<th>主題</th>
<th>次主題</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 自然界的組成與特性</td>
<td>物質與能量（INa）</td>
<td>物質的組成與特性（A）</td>
<td>物質組成與元素的週期性（Aa） 物質的形態、性質及分類（Ab）</td>
</tr>
<tr>
<td></td>
<td>能量的形式、轉換及流動（B）</td>
<td>能量的形式與轉換（Ba）</td>
<td>溫度與熱量（Bb） 生物體內的能量與代謝（Bc） 生態系中能量的流動與轉換（Bd）</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>構造與功能（INb）</td>
<td>物質的結構與功能（C）</td>
<td>物質的分離與鑑定（Ca） 物質的結構與功能（Cb）</td>
</tr>
<tr>
<td></td>
<td>生物體的構造與功能（D）</td>
<td></td>
<td>細胞的構造與功能（Da） 動植物體的構造與功能（Db） 生物體內的恆定性與調節（Dc）</td>
</tr>
<tr>
<td></td>
<td>系統與尺度（INc）</td>
<td>物質系統（E）</td>
<td>自然界的尺度與單位（Ea） 力與運動（Eb） 氣體（Ec） 宇宙與天體（Ed）</td>
</tr>
<tr>
<td></td>
<td>地球環境（F）</td>
<td>組成地球的物質（Fa） 地球與太空（Fb） 生物圈的組成（Fc）</td>
<td></td>
</tr>
<tr>
<td>2. 自然界的現象、規律及作用</td>
<td>改變與穩定（INd）</td>
<td>演化與延續（G）</td>
<td>生殖與遺傳（Ga） 演化（Gb） 生物多樣性（Gc）</td>
</tr>
<tr>
<td></td>
<td>地球的歷史（H）</td>
<td>地球的起源與演變（Ha） 地層與化石（Hb）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>變動的地球（I）</td>
<td>地表與地殼的變動（Ia） 天氣與氣候變化（Ib） 海水的運動（Ic） 晝夜與季節（Id）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>交互作用（INe）</td>
<td>物質的反應、平衡及製造（J）</td>
<td>物質反應規律（Ja） 水溶液中的變化（Jb） 氧化與還原反應（Jc） 酸鹼反應（Jd） 化學反應速率與平衡（Je） 有機化合物的性質、製備及反應（Jf）</td>
</tr>
<tr>
<td></td>
<td>自然界的現象與交互作用（K）</td>
<td>波動、光及聲音（Ka） 萬有引力（Kb） 電磁現象（Kc） 量子現象（Kd） 基本交互作用（Ke）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>生物與環境（L）</td>
<td>生物間的交互作用（La） 生物與環境的交互作用（Lb）</td>
<td></td>
</tr>
<tr>
<td>課題</td>
<td>跨科概念</td>
<td>主題</td>
<td>次主題</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3. 自然界的永續發展</td>
<td>科學與生活 (INf)</td>
<td>科學、科技、社會及人文 (M)</td>
<td>科學、技術及社會的互動關係 (Ma)</td>
</tr>
<tr>
<td></td>
<td>資源與永續性 (INg)</td>
<td>資源與永續發展 (N)</td>
<td>科學發展的歷史 (Mb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學在生活中的應用 (Mc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>天然災害與防治 (Md)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>環境汙染與防治 (Me)</td>
</tr>
</tbody>
</table>

備註：學習內容編碼方式

1. 第 1 碼：國民小學教育階段是以跨科概念統整理論（Interdiscipline），共包含七大跨科概念，其編碼以 INa-INg 呈現。國民中學教育階段及普通型高級中等學校教育階段因有分科之專門性，故以主題、次主題方式呈現，14 個主題以大寫英文字母A-N表示。普通型高級中等學校教育階段則再依科別於主題前增加大寫英文字母B、P、C、E之代碼，以代表生物(Biology)、物理(Physics)、化學(Chemistry)、地球科學(Earth Sciences)四科目之學習內容。

2. 第 2 碼：第二、三學習階段（國民小學教育階段三至四年級、五至六年級）分別以 II、III表示；第四學習階段（七至九年級，國民中學教育階段）以 IV表示；第五學習階段（十至十二年級，高級中等學校教育階段）則以 V 表示普通型高級中等學校必修內容，以 Va 表示普通型高級中等學校加深加廣選修內容。

3. 第 3 碼：阿拉伯數字為流水號。

一、國民小學教育階段學習重點

（一）學習表現

<table>
<thead>
<tr>
<th>項目</th>
<th>子項目</th>
<th>第二學習階段學習表現</th>
<th>第三學習階段學習表現</th>
</tr>
</thead>
<tbody>
<tr>
<td>探究能力</td>
<td>想像創造 (i)</td>
<td>ti-II-l 能在指導下觀察日常生活現象的規律性，並運用想像力與好奇心，了解及描述自然環境的現象。</td>
<td>ti-III-l 能運用好奇心察覺日常生活現象的規律性，會因為某些改變而產生差異，並能依據已知的科學知識科學方法想像可能發生的事情，以察覺不同的方法，也常能做出不同的成品。</td>
</tr>
<tr>
<td>- 思考智能 (t)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>推理論證 (r)</td>
<td>tr-II-l 能知道觀察、記錄所得自然現象的結果</td>
<td>tr-III-l 能將自己及他人所觀察、記錄的自然現象</td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>子項</td>
<td>第二學習階段學習表現</td>
<td>第三學習階段學習表現</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>是有其原因的，並依據習得的知識，說明自己的想法。</td>
<td>與習得的知識相互連結，察覺彼此間的關係，並提出自己的想法及知道與他人的差異。</td>
</tr>
<tr>
<td>批判思辨（c）</td>
<td>tc-Ⅱ-1</td>
<td>能簡單分辨或分類所觀察到的自然科學現象。</td>
<td>tc-Ⅲ-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tm-Ⅱ-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tm-Ⅲ-1</td>
</tr>
<tr>
<td>探究能力 - 問題解決（p）</td>
<td></td>
<td></td>
<td>po-Ⅲ-1</td>
</tr>
<tr>
<td></td>
<td>po-Ⅱ-1</td>
<td>能從日常經驗、學習活動、自然環境，進行觀察，進而能察覺問題。</td>
<td>po-Ⅲ-2</td>
</tr>
<tr>
<td></td>
<td>po-Ⅱ-2</td>
<td>能依據觀察、蒐集資料、閱讀、思考、討論等，提出問題。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>子項</td>
<td>第二學習階段學習表現</td>
<td>第三學習階段學習表現</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>pe-Ⅱ-2</td>
<td>的指導或說明下，能了解探究的計畫。</td>
<td>教師或教科書的指導或說明下，能了解探究的計畫，並進而能根據問題的特性、資源(設備等)的有無等因素，規劃簡單的探究活動。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>能正確安全操作適合學習階段的物品、器材儀器、科技設備及資源，並能觀察和記錄。</td>
<td></td>
</tr>
<tr>
<td>分析與發現(a)</td>
<td>pa-Ⅱ-1</td>
<td>能運用簡單分類、製作圖表等方法，整理已有的資訊或數據。</td>
<td>pa-Ⅲ-1</td>
</tr>
<tr>
<td></td>
<td>pa-Ⅱ-2</td>
<td>能從得到的資訊或數據，形成解釋、得到解答、解決問題。並能將自己的探究結果和他人的結果(例如：來自老師)相比較，檢查是否相近。</td>
<td>pa-Ⅲ-2</td>
</tr>
</tbody>
</table>
| 討論與傳達(c) | pc-Ⅱ-1 | 能專注聆聽同學報告，提出疑問或意見。並能對探究方法、過程或結果，進行檢討。 | pc-Ⅲ-1 | 能理解同學報告，提出合理的疑問或意見。並能對「所訂定的問題」、「探究方法」、
<table>
<thead>
<tr>
<th>項目</th>
<th>子項</th>
<th>第二學習階段學習表現</th>
<th>第三學習階段學習表現</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學的態度與本質（a）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pc-Ⅱ-2</td>
<td>能利用簡單形式的口語、文字或圖畫等，表達探究之過程、發現。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pc-Ⅲ-2</td>
<td>能利用簡單形式的口語、文字、影像（例如：攝影、錄影）、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或成果。</td>
</tr>
<tr>
<td></td>
<td>培養科學探究的興趣（i）</td>
<td>ai-Ⅱ-1</td>
<td>保持對自然現象的好奇心，透過不斷的探尋和提問，常會有新發現。透過探討自然與物質世界的規律性，感受發現的樂趣。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ai-Ⅱ-2</td>
<td>透過發現的樂趣，享受以成品來表現自己構想的樂趣。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ai-Ⅱ-3</td>
<td>透過動手實作，享受以成品來表現自己構想的樂趣。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ai-Ⅲ-1</td>
<td>透過科學探索了解現象發生的原因或機制，滿足好奇心。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ai-Ⅲ-2</td>
<td>透過成功的科學探索經驗，感受自然科學學習的樂趣。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ai-Ⅲ-3</td>
<td>參與合作學習並與同儕有良好的互動經驗，享受學習科學的樂趣。</td>
</tr>
<tr>
<td></td>
<td>養成應用科學思考與探究的習慣（h）</td>
<td>ah-Ⅱ-1</td>
<td>透過各種感官了解生活週遭事物的屬性。透過有系統的分類與表達方式，與他人溝通自己的想法與發現。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ah-Ⅱ-2</td>
<td>透過各種感官了解生活週遭事物的屬性。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ah-Ⅲ-1</td>
<td>利用科學知識理解日常生活觀察到的现象。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ah-Ⅲ-2</td>
<td>透過科學探究活動解決一部分生活週遭的問題。</td>
</tr>
<tr>
<td></td>
<td>認識科學本質（n）</td>
<td>an-Ⅱ-1</td>
<td>體會科學的探索都是由問題開始。察觉科學家們是利用不同的方式探求自然與物質世界的</td>
</tr>
<tr>
<td></td>
<td></td>
<td>an-Ⅱ-2</td>
<td>體會科學的探索都是由問題開始。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>an-Ⅲ-1</td>
<td>透過科學探究活動，了解科學知識的基礎是來自於真實的經驗和證據。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>an-Ⅲ-2</td>
<td>發覺許多科學</td>
</tr>
</tbody>
</table>
項目 | 子項 | 第二學習階段學習表現 | 第三學習階段學習表現
--- | --- | --- | ---
 | | 形式與規律。發覺創造和想像是科學的重 要元素。 | 的主張與結論，會隨著新證據的出現而改變。 |
 | | an-Ⅱ-3 | an-Ⅲ-3 | |

(二) 學習內容

1. 自然界的組成與特性

<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段學習內容</th>
<th>第三學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質與能量 (ⅠNa)</td>
<td>1Na-Ⅱ-1 自然界（包含生物與非生物）是由不同物質所組成。</td>
<td>1Na-Ⅲ-1 物質是由微小的粒子所組成，而且粒子不斷的運動。</td>
</tr>
<tr>
<td></td>
<td>1Na-Ⅱ-2 在地球上，物質具有重量，佔有體積。</td>
<td>1Na-Ⅲ-2 物質各有不同性質，有些性質會隨溫度而改變。</td>
</tr>
<tr>
<td></td>
<td>1Na-Ⅱ-3 物質各有其特性，並可以依其特性與用途進行分類。</td>
<td>1Na-Ⅲ-3 混合物是由不同的物質所混合，物質混合前後重量不會改變，性質可能會改變。</td>
</tr>
<tr>
<td></td>
<td>1Na-Ⅱ-4 物質的形態會因溫度的不同而改變。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1Na-Ⅱ-5 太陽照射、物質燃燒和摩擦等可以使溫度升高，運用測量的方法可知溫度高低。</td>
<td>1Na-Ⅲ-4 空氣由各種不同氣體所組成，空氣具有熱脹冷縮的性質。氣體無一定的形狀與體積。</td>
</tr>
<tr>
<td></td>
<td>1Na-Ⅱ-6 太陽是地球能量的主要來源，提供生物的生長需要，能量可以各種形式呈現。</td>
<td>1Na-Ⅲ-5 不同形式的能量可以相互轉換，但總量不變。</td>
</tr>
<tr>
<td></td>
<td>1Na-Ⅱ-7 生物需要能量(養分)、陽光、空氣、水和土壤，維持生命、生長與活動。</td>
<td>1Na-Ⅲ-6 能量可藉由電流傳遞、轉換而後為人類所應用。利用電池等設備可以儲存電能再轉換成其他能量。</td>
</tr>
<tr>
<td></td>
<td>1Na-Ⅱ-8 日常生活中常用的能源。</td>
<td>1Na-Ⅲ-7 運動的物體具有動能，對同一物體而言，速度越快動能越大。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Na-Ⅲ-8 熱由高溫處往低溫處傳播，傳播的方式有傳導、對流和輻射，生活中可運用不同的方法保溫與散熱。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Na-Ⅲ-9 植物生長所需的養分</td>
</tr>
</tbody>
</table>
課題1：自然界的組成與特性

<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段學習內容</th>
<th>第三學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>構造與功能（INb）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INb-Ⅱ-1</td>
<td>物質或物體各有不同的功能或用途。</td>
<td>INb-Ⅲ-1</td>
</tr>
<tr>
<td>INb-Ⅱ-2</td>
<td>物質性質上的差異性可用来區分或分離物質。</td>
<td>INb-Ⅲ-2</td>
</tr>
<tr>
<td>INb-Ⅱ-3</td>
<td>虹吸現象可用來將容器中的水吸出；速通管可測水平。</td>
<td>INb-Ⅲ-3</td>
</tr>
<tr>
<td>INb-Ⅱ-4</td>
<td>生物體的構造與功能是互相配合的。</td>
<td>INb-Ⅲ-4</td>
</tr>
<tr>
<td>INb-Ⅱ-5</td>
<td>常見動物的外部形態主要為頭、軀幹和肢，但不同類別動物之各部位特徵和名稱有差異。</td>
<td>INb-Ⅲ-5</td>
</tr>
<tr>
<td>INb-Ⅱ-6</td>
<td>常見植物的外部形態主要由根、莖、葉、花、果實及種子所組成。</td>
<td>INb-Ⅲ-6</td>
</tr>
<tr>
<td>INb-Ⅱ-7</td>
<td>動植物體的外部形態和內部構造，與其生長、行為、繁衍後代和適應環境有關。</td>
<td>INb-Ⅲ-7</td>
</tr>
<tr>
<td>INb-Ⅱ-8</td>
<td></td>
<td>INb-Ⅲ-8</td>
</tr>
<tr>
<td>系統與尺度（INc）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INc-Ⅱ-1</td>
<td>使用工具或自訂參考標準可量度與比較。</td>
<td>INc-Ⅲ-1</td>
</tr>
<tr>
<td>INc-Ⅱ-2</td>
<td>生活中常見的測量單位與度量。</td>
<td>INc-Ⅲ-2</td>
</tr>
<tr>
<td>INc-Ⅱ-3</td>
<td>力的表示法，包括大小、方向與作用點等。</td>
<td>INc-Ⅲ-3</td>
</tr>
<tr>
<td>INc-Ⅱ-4</td>
<td>方向、距離可用以表示物體位置。</td>
<td>INc-Ⅲ-4</td>
</tr>
<tr>
<td>INc-Ⅱ-5</td>
<td>水和空氣可以傳送動力讓物體移動。</td>
<td>INc-Ⅲ-5</td>
</tr>
<tr>
<td>INc-Ⅱ-6</td>
<td>水有三態變化及毛細現象。</td>
<td></td>
</tr>
<tr>
<td>INc-Ⅱ-7</td>
<td>利用適當的工具觀察不同大小、距離位置的物體。</td>
<td></td>
</tr>
<tr>
<td>INc-Ⅱ-8</td>
<td>不同的環境有不同的生態系統與尺度。</td>
<td></td>
</tr>
</tbody>
</table>
2. 自然界的現象、規律及作用

課題 2：自然界的現象、規律及作用

<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段學習內容</th>
<th>第三學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>INd-Ⅱ-1</td>
<td>當受外在因素作用時，物質或自然現象可能會改變。改變有些較快、有些較慢；有些可以回復，有些則不能。</td>
<td>INd-Ⅲ-1</td>
</tr>
<tr>
<td>INd-Ⅱ-2</td>
<td>物質或自然現象的改變情形，可以運用測量的工具和方法得知。</td>
<td>INd-Ⅲ-2</td>
</tr>
<tr>
<td>INd-Ⅱ-3</td>
<td>生物從出生、成長到死亡有一定的壽命，透過</td>
<td></td>
</tr>
</tbody>
</table>

注：
- **課題 1：自然界的組成與特性**
- 跨科概念
- 第二學習階段學習內容
- 第三學習階段學習內容

<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段學習內容</th>
<th>第三學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>INc-Ⅱ-9</td>
<td>物生存。</td>
<td>INc-Ⅲ-6</td>
</tr>
<tr>
<td>INc-Ⅱ-10</td>
<td>天空中天體有東升西落的現象，月亮有盈虧的變化，星星則是有些亮有些暗。</td>
<td>INc-Ⅲ-7</td>
</tr>
<tr>
<td></td>
<td>地表具有岩石、砂、土壤等不同環境，各有特徵，可以分辨。</td>
<td>INc-Ⅲ-8</td>
</tr>
<tr>
<td></td>
<td>天空中的天體有東升西落的現象，月亮有盈虧的變化，星星則是有些亮有些暗。</td>
<td>INc-Ⅲ-9</td>
</tr>
<tr>
<td></td>
<td>地球是由空氣、陸地、海洋及生存於其中的生物所組成的。</td>
<td>INc-Ⅲ-10</td>
</tr>
<tr>
<td></td>
<td>岩石由礦物組成，岩石和礦物有不同特徵，各有不同用途。</td>
<td>INc-Ⅲ-11</td>
</tr>
<tr>
<td></td>
<td>日出日落時間與位置，在不同季節會不同。</td>
<td>INc-Ⅲ-12</td>
</tr>
<tr>
<td></td>
<td>除了地球外，還有其他行星環繞著太陽運行。</td>
<td>INc-Ⅲ-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INc-Ⅲ-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INc-Ⅲ-15</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段學習內容</td>
<td>第三學習階段學習內容</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>INd-Ⅱ-4</td>
<td>生殖繁衍下一代。</td>
<td>1Nd-Ⅲ-3</td>
</tr>
<tr>
<td>INd-Ⅱ-5</td>
<td>空氣流動產生風。</td>
<td>1Nd-Ⅲ-4</td>
</tr>
<tr>
<td>INd-Ⅱ-6</td>
<td>自然環境中有砂石及土壤，會因水流、風而發生改變。</td>
<td>1Nd-Ⅲ-5</td>
</tr>
<tr>
<td>INd-Ⅱ-7</td>
<td>一年四季氣溫會有所變化，天氣也會有所不同。氣象報告可以讓我們知道天氣的可能變化。</td>
<td>1Nd-Ⅲ-6</td>
</tr>
<tr>
<td>INd-Ⅱ-8</td>
<td>天氣預報常用雨量、溫度、風向、風速等資料來表達天氣狀態，這些資料可以使用適當儀器測得。</td>
<td>1Nd-Ⅲ-7</td>
</tr>
<tr>
<td>INd-Ⅱ-9</td>
<td>力有各種不同的形式。施力可能會使物體改變運動情形或形狀；當物體受力變形時，有的可恢復原狀，有的不能恢復原狀。</td>
<td>1Nd-Ⅲ-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Nd-Ⅲ-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Nd-Ⅲ-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Nd-Ⅲ-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Nd-Ⅲ-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Nd-Ⅲ-13</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段學習內容</td>
<td>第三學習階段學習內容</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>交互作用</td>
<td>INe-Ⅱ-1 自然界的物體、生物、環境間常會相互影響。</td>
<td>INe-Ⅲ-1 自然界的物體、生物與環境間的交互作用，常具有規則性。</td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-2 溫度會影響物質在水中溶解的程度(定性)及物質燃燒、生鏽、發酵等現象。</td>
<td>INe-Ⅲ-2 物質的形態與性質可因燃燒、生鏽、發酵、酸鹼作用等而改變或形成新物質，這些改變有些會和溫度、水、空氣、光等有關。改變要能發生，常需要具備一些條件。</td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-3 有些物質溶於水中，有些物質不容易溶於水中。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-4 常見食物的酸鹼性有時可利用味覺、觸覺、味覺简单的區分，花卉、菜葉會因接觸到酸鹼而改變顏色。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-5 生活周遭有各種的聲音：物體振動會產生聲音，聲音可以透過固體、液體、氣體傳播。不同的動物會發出不同的聲音，並且作為溝通的方式。</td>
<td>INe-Ⅲ-3 燃燒是物質與氧劇烈作用的現象，燃燒必须同時具備可燃物、助燃物，並達到燃點等三個要素。</td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-6 光線以直線前進，反射時有一定的方向。</td>
<td>INe-Ⅲ-4 物質溶解、反應前後總重量不變。</td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-7 磁鐵具有兩極，同極相斥，異極相吸；磁鐵會吸引含鐵的物體。磁力強弱可由吸起含鐵物質數量多寡得知。</td>
<td>INe-Ⅲ-5 常用酸鹼物質的特性，水溶液的酸鹼性能及其生活上的運用。</td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-8 物質可分為電的良導體和不良導體，將電池用電線或良導體接成通路，可使燈泡發光、馬達轉動。</td>
<td>INe-Ⅲ-6 聲音有大小、高低與音色等不同性質，生活中聲音有樂音與噪音之分，噪音可以防治。</td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-9 電池或燈泡可以有串聯和並聯的接法，不同的接法會產生不同的效果。</td>
<td>INe-Ⅲ-7 陽光是由不同色光組成。</td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-10 動物的感覺器官接受外界刺激會引起生理和行為反應。</td>
<td>INe-Ⅲ-8 光會有折射現象，放大鏡可聚光和成像。</td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-11 環境的變化會影響植物</td>
<td>INe-Ⅲ-9 地球有磁場，會使指北針指向固定方向。</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>動物有覓食、生殖、保護、訊息傳遞以及社會性的行為。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>生物的分布和習性，會</td>
</tr>
</tbody>
</table>

19
課題 2：自然界的現象、規律及作用

<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段學習內容</th>
<th>第三學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>生長。</td>
<td>受環境因素的影響：環境改變也會影響生存於其中的生物種類。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>生態系中生物與生物彼此間的交互作用，有寄生、共生和競爭的關係。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段學習內容</th>
<th>第三學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學與生活（INf）</td>
<td>INf-Ⅱ-1 日常生活中常見的科技產品。</td>
<td>INf-Ⅲ-1 世界與本地不同性別科學家的事蹟與貢獻。</td>
</tr>
<tr>
<td></td>
<td>INf-Ⅱ-2 不同的環境影響人類食物的種類、來源與飲食習慣。</td>
<td>INf-Ⅲ-2 科技在生活中的應用與對環境與人體的影響。</td>
</tr>
<tr>
<td></td>
<td>INf-Ⅱ-3 自然的規律與變化對人類生活應用與美感的啟發。</td>
<td>INf-Ⅲ-3 自然界生物的特徵與原理在人類生活上的應用。</td>
</tr>
<tr>
<td></td>
<td>INf-Ⅱ-4 季節的變化與人類生活的关系。</td>
<td>INf-Ⅲ-4 人類日常生活中所依賴的經濟動植物及栽培繁殖的方法。</td>
</tr>
<tr>
<td></td>
<td>INf-Ⅱ-5 人類活動對環境造成影響。</td>
<td>INf-Ⅲ-5 臺灣的主要天然災害之認識及防災避難。</td>
</tr>
<tr>
<td></td>
<td>INf-Ⅱ-6 地震會造成嚴重的災害，平時的準備與防震能降低損害。</td>
<td>INf-Ⅲ-6 生活中的電器可以產生電磁波，具有功能但也可能造成傷害。</td>
</tr>
<tr>
<td></td>
<td>INf-Ⅱ-7 水與空氣汙染會對生物產生影響。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段學習內容</th>
<th>第三學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>資源與永續性（INg）</td>
<td>INg-Ⅱ-1 自然環境中有許多資源。人類生存與生活需依賴自然環境中的各種資源，但自然資源都是有限的，需要珍惜使用。</td>
<td>INg-Ⅲ-1 自然景觀和環境一旦被改變或破壞，極難恢復。</td>
</tr>
<tr>
<td></td>
<td>INg-Ⅱ-2 地球資源永續可結合日常生活低碳與節水方法做起。</td>
<td>INg-Ⅲ-2 人類活動與其他生物的活動會相互影響，不當引進外來物種可能造成經濟損失和生態破壞。</td>
</tr>
<tr>
<td></td>
<td>INg-Ⅱ-3 可利用垃圾減量、資源回收、節約能源等方法來保護環境。</td>
<td>INg-Ⅲ-3 生物多樣性對人類的重要性，而氣候變遷將對生物生存造成影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INg-Ⅲ-4 人類的活動會造成氣候變遷，加速對生態與環境的影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INg-Ⅲ-5 能源的使用與地球永續發展息息相關。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INg-Ⅲ-6 碳足跡與水足跡所代表的意義。</td>
</tr>
</tbody>
</table>

3. 自然界的永續發展
課題 3：自然界的永續發展

<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段學習內容</th>
<th>第三學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>INg-III-7</td>
</tr>
<tr>
<td></td>
<td>表環境的意涵。</td>
<td>人類行為的改變可以 減緩氣候變遷所造成的 衝擊與影響。</td>
</tr>
</tbody>
</table>

二、國民中學教育階段學習重點

（一）學習表現

<table>
<thead>
<tr>
<th>項目</th>
<th>子項</th>
<th>第四學習階段學習表現</th>
</tr>
</thead>
<tbody>
<tr>
<td>探究能力</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 想像創造 (i)</td>
<td>ti-IV-1</td>
<td>能依據已知的自然科 學知識概念，經由自我 或團體探索與討論的過程，想像當使用的觀 察方法或實驗方法改變時，其結果可能產生 的差異；並能嘗試在指導下以創新思考和方 法得到新的模型、成品或結果。</td>
</tr>
<tr>
<td>推理論證 (r)</td>
<td>tr-IV-1</td>
<td>能將所習得的知識正確的連結到所觀察到的 自然現象及實驗數據，並推論出其中的關係， 進而運用習得的知識來解釋自己論點的正確 性。</td>
</tr>
<tr>
<td>批判思辨 (c)</td>
<td>tc-IV-1</td>
<td>能依據已知的自然科 學知識與概念，對自己 蒐集與分析的科學數據，培養合理的懷疑態 度，並對他人的資訊或報告，提出自己的看 法或解釋。</td>
</tr>
<tr>
<td>建立模型 (m)</td>
<td>tm-IV-1</td>
<td>能從實驗過程、合作 討論中理解較複雜的自 然界模型，並能評估不同模型的優點和限制， 進而應用在後續的科學理解或生活。</td>
</tr>
<tr>
<td>探究能力</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 観察與定題 (o)</td>
<td>po-IV-1</td>
<td>能從學習活動、日常 經驗及科技運用、自然 環境、書刊及網路媒體中，進行各種有計畫 的觀察，進而能察覺問題。 能辨別適合科學探究或適合以科學方式尋求 解決的問題（或假說），並能依據觀察、蒐集 資料、閱讀、思考、討論等，提出適當探究之 問題。</td>
</tr>
<tr>
<td></td>
<td>po-IV-2</td>
<td></td>
</tr>
<tr>
<td>計劃與執行 (e)</td>
<td>pe-IV-1</td>
<td>能辨明多個自變項、應變項並計劃適當次數 的測試、預測活動的可能結果。在教師或教 科書的指導或說明下，能了解探究的計畫， 並進而能根據問題特性、資源（例如：設備、 時間）等因素，規劃具有可信度（例如：多次 測量等）的探究活動。 能正確安全操作適合學習階段的物品、器材 儀器、科技設備及資源。能進行客觀的質性 觀察或數值量測並詳實記錄。</td>
</tr>
<tr>
<td></td>
<td>pe-IV-2</td>
<td></td>
</tr>
<tr>
<td>分析與發現 (a)</td>
<td>pa-IV-1</td>
<td>能分析歸納、製作圖表、使用資訊及數學等 方法，整理資訊或數據。 能運用科學原理、思考智能、數學等方法， 從（所得的）資訊或數據，形成解釋、發現新</td>
</tr>
</tbody>
</table>
項目 | 子項 | 第四學習階段學習表現
---|---|---
知、獲知因果關係、解決問題或是發現新的問題。並能將自己的探究結果和同學的結果或其他相關的資訊比較對照，相互檢核，確認結果。

討論與傳達 (c)
| pc-IV-1 | 能理解同學的探究過程和結果（或經簡化過的科學報告），提出合理而具有根據的疑問或意見。並能對問題、探究方法、證據及發現，彼此間的符應情形，進行檢核並提出可能的改善方案。
| pc-IV-2 | 能利用口語、影像（例如：攝影、錄影）、文字與圖案、繪圖或實物、科學名詞、數學公式、模型或經教師認可後以報告或新媒體形式表達完整之探究過程、發現與成果、價值、限制和主張等。視需要，並能摘要描述主要過程、發現和可能的運用。

科學的態度與本質 (a)
| ai-IV-1 | 培養科學探究的興趣（i）
| ai-IV-2 | 助手實作解決問題或驗證自己想法，而獲得成就感。
| ai-IV-3 | 透過與同儕的討論，分享科學發現的樂趣。

養成應用科學思考與探究的習慣 (h)
| ah-IV-1 | 對於有關科學發現的報導，甚至權威的解釋（例如：報章雜誌的報導或書本上的解釋），能抱持懷疑的態度，評估其推論的證據是否充分且可信賴。
| ah-IV-2 | 應用所學到的科學知識與科學探究方法，幫助自己做出最佳的決定。

認識科學本質 (n)
| an-IV-1 | 察覺到科學的觀察、測量和方法是否具有正當性，是受到社會共同建構的標準所規範。分辨科學知識的確定性和持久性，會因科學研究的時空背景不同而有所變化。
| an-IV-2 | 體察到不同性別、背景、族群科學家們具有堅毅、嚴謹和講求邏輯的特質，也具有好奇心、求知慾和想像力。

(二) 學習內容

1. 國民中學教育階段學習內容

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第四學習階段學習內容</th>
</tr>
</thead>
</table>
| 物質的組成與特性（A） | 物質組成與元素的週期性（Aa） | Aa-IV-1 | 原子模型的發展。
Aa-IV-2 | 原子量與分子量是原子、分子之間的相對質量。
Aa-IV-3 | 純物質包括元素與化合物。
Aa-IV-4 | 元素的性質有規律性和週期性。
Aa-IV-5 | 元素與化合物有特定的化學符號表示法。
<p>| 物質的形態、性 | Ab-IV-1 | 物質的粒子模型與物質三態。 |</p>
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第四學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>質及分類（Ab）</td>
<td>Ab-IV-2</td>
<td>溫度會影響物質的狀態。</td>
</tr>
<tr>
<td></td>
<td>Ab-IV-3</td>
<td>物質的物理性質與化學性質。</td>
</tr>
<tr>
<td></td>
<td>Ab-IV-4</td>
<td>物質依是否可用物理方法分離，可分為純物質和混合物。</td>
</tr>
<tr>
<td>能量的形式、轉換及流動（B）</td>
<td>能量的形式與轉換（Ba）</td>
<td>Ba-IV-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ba-IV-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ba-IV-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ba-IV-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ba-IV-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ba-IV-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ba-IV-7</td>
</tr>
<tr>
<td>溫度與熱量（Bb）</td>
<td>Bb-IV-1</td>
<td>熱具有從高溫處傳到低溫處的趨勢。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bb-IV-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bb-IV-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bb-IV-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bb-IV-5</td>
</tr>
<tr>
<td>生物體內的能量與代謝（Bc）</td>
<td>Bc-IV-1</td>
<td>生物經由酵素的催化進行新陳代謝，並以實驗活動探討影響酵素作用速率的因素。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bc-IV-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bc-IV-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bc-IV-4</td>
</tr>
<tr>
<td>生態系中能量的流動與轉換（Bd）</td>
<td>Bd-IV-1</td>
<td>生態系中的能量來源是太陽，能量會經由食物鏈在不同生物間流轉。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bd-IV-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bd-IV-3</td>
</tr>
<tr>
<td>物質的結構與功能（C）</td>
<td>物質的分離與鑑定（Ca）</td>
<td>Ca-IV-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ca-IV-2</td>
</tr>
<tr>
<td></td>
<td>物質的結構與</td>
<td>Cb-IV-1</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第四學習階段學習內容</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| 生物體的構造與功能 (D) | 功能 (Cb) | Cb-IV-2 元素會因原子排列方式不同而有不同的特性。
Cb-IV-3 分子式相同會因原子排列方式不同而形成不同的物質。 |
| | 細胞的構造與功能 (Da) | Da-IV-1 使用適當的儀器可觀察到細胞的形態及細胞膜、細胞質、細胞核、細胞壁等基本構造。
Da-IV-2 細胞是組成生物體的基本單位。
Da-IV-3 多細胞個體具有細胞、組織、器官、器官系統等組成層次。
Da-IV-4 細胞會進行細胞分裂,染色體在分裂過程中會發生變化。 |
| | 動植物體的構造與功能 (Db) | Db-IV-1 動物體（以人體為例）經由攝食、消化、吸收獲得所需的養分。
Db-IV-2 動物體（以人體為例）的循環系統能將體內的物質運輸至各細胞處，並進行物質交換，並經由心跳、心音及脈搏的探測，以了解循環系統的運作情形。
Db-IV-3 動物體（以人體為例）藉由呼吸系統與外界交換氣體。
Db-IV-4 生殖系統（以人體為例）能產生配子進行有性生殖，並且有分泌激素的功能。
Db-IV-5 動植物體適應環境的構造常成為人類發展各種精密儀器的參考。
Db-IV-6 植物體根、莖、葉、花、果實內的維管束具有運輸功能。
Db-IV-7 花的構造中，雄蕊的花藥可產生花粉粒，花粉粒內有精細胞；雌蕊的子房內有胚珠，胚珠內有卵細胞。
Db-IV-8 植物體的分布會影響水在地表的流動，也會影響氣溫和空氣品質。 |
| | 生物體內的恆定性與調節（Dc） | Dc-IV-1 人體的神經系統能察覺環境的變動並產生反應。
Dc-IV-2 人體的內分泌系統能調節代謝作用，維持體內物質的恆定。
Dc-IV-3 皮膚是人體的第一道防禦系統，能阻止外來物，例如：細菌的侵入；而淋巴系統則可進一步產生免疫作用。
Dc-IV-4 人體會藉由各系統的協調，使體內所含的物質以及各種狀態能維持在一定範圍內。
Dc-IV-5 生物體能察覺外界環境變化，採取適當的反應以使體內環境維持恆定，這些現象能以觀察或改變自變項的方式來探討。 |
| 物質系統（E） | 自然界的尺度與單位（Ea） | Ea-IV-1 時間、長度、質量等為基本物理量，經由計算可得到密度、體積等衍生物理量。
Ea-IV-2 以適當的尺度量測或推估物理量，例如：奈
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第四學習階段學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料性能 (Ea)</td>
<td>Ea-IV-3</td>
<td>面到光年、毫克到公噸、毫升到立方公尺等。測量時可依工具的最小刻度進行估計。</td>
</tr>
<tr>
<td>力與運動 (Eb)</td>
<td>Eb-IV-1</td>
<td>力能引發物體的移動或轉動。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-2</td>
<td>力矩會改變物體的轉動，槓桿是力矩的作</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-3</td>
<td>平衡的物體所受合力為零且合力矩為零。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-4</td>
<td>摩擦力可分靜摩擦力與動摩擦力。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-5</td>
<td>壓力的定義與帕斯卡原理。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-6</td>
<td>物體在靜止液體中所受浮力,等於排開液體的重量。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-7</td>
<td>簡單機械,例如：槓桿、滑輪、輪軸、齒輪、斜面,通常具有省時、省力,或者是改變作用力方向等功能。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-8</td>
<td>距離、時間及方向等概念可用來描述物體的運動。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-9</td>
<td>周運動是一種加速度運動。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-10</td>
<td>物體不受力時,會保持原有的運動狀態。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-11</td>
<td>物體做加速度運動時,必受力。以相同的力作用相同的時間,則質量愈小的物體其受到力後造成的速度改變愈大。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-12</td>
<td>物體的質量決定其慣性大小。</td>
</tr>
<tr>
<td></td>
<td>Eb-IV-13</td>
<td>對於每一作用力都有一個大小相等、方向相反的反作用力。</td>
</tr>
<tr>
<td>氣體 (Ec)</td>
<td>Ec-IV-1</td>
<td>大氣壓力是因為大氣層中空氣的重量所造成。</td>
</tr>
<tr>
<td></td>
<td>Ec-IV-2</td>
<td>定溫下,定量氣體在密閉容器內，其壓力與體積的定性關係。</td>
</tr>
<tr>
<td>宇宙與天體 (Ed)</td>
<td>Ed-IV-1</td>
<td>星系是組成宇宙的基本單位。</td>
</tr>
<tr>
<td></td>
<td>Ed-IV-2</td>
<td>我們所在的星系,稱為銀河系,主要是由恆星所組成；太陽是銀河系的成員之一。</td>
</tr>
<tr>
<td>地球環境 (F)</td>
<td>Fa-IV-1</td>
<td>組成地球的物質：地球具有大氣圈、水圈和岩石圈。</td>
</tr>
<tr>
<td></td>
<td>Fa-IV-2</td>
<td>三大類岩石有不同的特徵和成因。</td>
</tr>
<tr>
<td></td>
<td>Fa-IV-3</td>
<td>大氣的主要成分為氮氣和氧氣，並含有水氣、二氧化碳等變動氣體。</td>
</tr>
<tr>
<td></td>
<td>Fa-IV-4</td>
<td>大氣可由溫度變化分層。</td>
</tr>
<tr>
<td></td>
<td>Fa-IV-5</td>
<td>海水具有不同的成分及特性。</td>
</tr>
<tr>
<td>地球與太空 (Fb)</td>
<td>Fb-IV-1</td>
<td>太陽系由太陽和行星組成，行星均繞太陽公轉。</td>
</tr>
<tr>
<td></td>
<td>Fb-IV-2</td>
<td>類地行星的環境差異極大。</td>
</tr>
<tr>
<td></td>
<td>Fb-IV-3</td>
<td>月球繞地球公轉；日、月、地在同一直線上會發生日月食。</td>
</tr>
<tr>
<td></td>
<td>Fb-IV-4</td>
<td>月相變化具有規律性。</td>
</tr>
<tr>
<td>生物圈的組成 (Fc)</td>
<td>Fc-IV-1</td>
<td>生物圈內含有不同的生態系。生態系的生物因子，其組成層次由低到高為個體、族群、群集。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第四學習階段學習內容</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>演化與延續 (G)</td>
<td>生殖與遺傳 (Ga)</td>
<td>Fc-IV-2 組成生物體的基本單位是細胞,而細胞則由醣類、蛋白質及脂質等分子所組成,這些分子則由更小的粒子所組成。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-1 生物的生殖可分為有性生殖與無性生殖,有性生殖產生的子代其性狀和親代差異較大。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-2 人類的性別主要由性染色體決定。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-3 人類的 ABO 血型是可遺傳的性狀。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-4 遺傳物質會發生變異,其變異可能造成性狀的改變,若變異發生在生殖細胞可遺傳到後代。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-5 生物技術的進步,有助於解決農業、食品、能源、醫藥,以及環境相關的問題,但也可能帶來新問題。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-6 孟德爾遺傳研究的科學史。</td>
</tr>
<tr>
<td>演化 (Gb)</td>
<td></td>
<td>Gb-IV-1 從地層中發現的化石,可以知道地球上曾經存在許多的生物,但有些生物已經消失了,例如：三葉蟲、恐龍等。</td>
</tr>
<tr>
<td>生物多樣性 (Gc)</td>
<td></td>
<td>Gc-IV-1 依據生物形態與構造的特徵,可以將生物分類。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gc-IV-2 地球上有形形色色的生物,在生態系中擔任不同的角色,發揮不同的功能,有助於維持生態系的穩定。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gc-IV-3 人的體表和體內有許多微生物,有些微生物對人體有利,有些則有害。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gc-IV-4 人類文明發展中有許多利用微生物的例子,例如：早期的釀酒、近期的基因轉殖等。</td>
</tr>
<tr>
<td>地球的歷史 (H)</td>
<td>地層與化石 (Hb)</td>
<td>Hb-IV-1 研究岩層岩性與化石可幫助了解地球的歷史。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hb-IV-2 解讀地層、地質事件,可幫助了解當地的地層發展先後順序。</td>
</tr>
<tr>
<td>變動的地球 (I)</td>
<td>地表與地殼的變動 (Ia)</td>
<td>Ia-IV-1 外營力及內營力的作用會改變地貌。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ia-IV-2 岩石圈可分為數個板塊。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ia-IV-3 板塊之間會相互分離或聚合,產生地震、火山和造山運動。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ia-IV-4 全球地震、火山分布在特定的地帶,且兩者相當吻合。</td>
</tr>
<tr>
<td></td>
<td>天氣與氣候變化 (Ib)</td>
<td>Ib-IV-1 氣圈是性質均勻的大型空氣圈層,性質各有不同。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ib-IV-2 氣壓差會造成空氣的流動而產生風。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ib-IV-3 由於地球自轉的關係會造成高、低氣壓空氣的旋轉。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ib-IV-4 鋒面是性質不同的氣圈之交界面,會產生各種天氣變化。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ib-IV-5 臺灣的災變天氣包括颱風、梅雨、寒潮、乾旱等現象。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第四學習階段學習內容</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ib-IV-6 台灣秋冬受東北季風影響，夏季受西南季風影響，造成各地氣溫、風向和降水的季節性差異。</td>
</tr>
<tr>
<td>海水的運動</td>
<td>Ic-IV-1</td>
<td>海水運動包含波浪、海流和潮汐，各有不同的運動方式。</td>
</tr>
<tr>
<td>(Ic)</td>
<td>Ic-IV-2</td>
<td>海流對陸地的氣候會產生影響。</td>
</tr>
<tr>
<td></td>
<td>Ic-IV-3</td>
<td>臺灣附近的海流隨季節有所不同。</td>
</tr>
<tr>
<td></td>
<td>Ic-IV-4</td>
<td>潮汐變化具有規律性。</td>
</tr>
<tr>
<td>畫夜與季節</td>
<td>Id-IV-1</td>
<td>夏季白天較長，冬季黑夜較長。</td>
</tr>
<tr>
<td>(Id)</td>
<td>Id-IV-2</td>
<td>陽光照射角度之變化，會造成地表單位面積土地吸收太陽能量的不同。</td>
</tr>
<tr>
<td></td>
<td>Id-IV-3</td>
<td>地球的四季主要是因為地球自轉軸傾斜於地球公轉軌道面而造成。</td>
</tr>
<tr>
<td>物質的反應、平衡及製造 (J)</td>
<td>Ja-IV-1</td>
<td>化學反應中的質量守恆定律。</td>
</tr>
<tr>
<td></td>
<td>Ja-IV-2</td>
<td>化學反應是原子重新排列。</td>
</tr>
<tr>
<td></td>
<td>Ja-IV-3</td>
<td>化學反應中常伴隨沉澱、氣體、顏色及溫度變化等現象。</td>
</tr>
<tr>
<td></td>
<td>Ja-IV-4</td>
<td>化學反應的表示法。</td>
</tr>
<tr>
<td>水溶液中的變化 (Jb)</td>
<td>Jb-IV-1</td>
<td>由水溶液導電的實驗認識電解質與非電解質。</td>
</tr>
<tr>
<td></td>
<td>Jb-IV-2</td>
<td>電解質在水溶液中會解離出陰離子和陽離子而導電。</td>
</tr>
<tr>
<td></td>
<td>Jb-IV-3</td>
<td>不同的離子在水溶液中可能會發生沉澱、酸鹼中和及氧化還原等反應。</td>
</tr>
<tr>
<td></td>
<td>Jb-IV-4</td>
<td>溶液的概念及重量百分濃度 (P%)、百萬分點的表示法 (ppm)。</td>
</tr>
<tr>
<td>氧化與還原反應 (Jc)</td>
<td>Jc-IV-1</td>
<td>氧化與還原的狹義定義為：物質得到氧稱為氧化反應；失去氧稱為還原反應。</td>
</tr>
<tr>
<td></td>
<td>Jc-IV-2</td>
<td>物質燃燒實驗認識氧化。</td>
</tr>
<tr>
<td></td>
<td>Jc-IV-3</td>
<td>不同金屬元素燃燒實驗認識元素對氧氣的活性。</td>
</tr>
<tr>
<td></td>
<td>Jc-IV-4</td>
<td>生活中常見的氧化還原反應與應用。</td>
</tr>
<tr>
<td></td>
<td>Jc-IV-5</td>
<td>鋅銅電池實驗認識電池原理。</td>
</tr>
<tr>
<td></td>
<td>Jc-IV-6</td>
<td>化學電池的放電與充電。</td>
</tr>
<tr>
<td></td>
<td>Jc-IV-7</td>
<td>電解水與硫酸銅水溶液實驗認識電解原理。</td>
</tr>
<tr>
<td>酸鹼反應 (Jd)</td>
<td>Jd-IV-1</td>
<td>金屬與非金屬氧化物在水溶液中的酸鹼性，及酸性溶液對金屬與大理石的反應。</td>
</tr>
<tr>
<td></td>
<td>Jd-IV-2</td>
<td>酸鹼強度與 pH 值的關係。</td>
</tr>
<tr>
<td></td>
<td>Jd-IV-3</td>
<td>實驗認識廣用指示劑及 pH 計。</td>
</tr>
<tr>
<td></td>
<td>Jd-IV-4</td>
<td>水溶液中氫離子與氫氧根離子的關係。</td>
</tr>
<tr>
<td></td>
<td>Jd-IV-5</td>
<td>酸、鹼、鹽類在日常生活的應用與危險性。</td>
</tr>
<tr>
<td></td>
<td>Jd-IV-6</td>
<td>實驗認識酸與鹼中和生成鹽和水，並可放出熱量而使溫度變化。</td>
</tr>
<tr>
<td>化學反應速率與平衡 (Je)</td>
<td>Je-IV-1</td>
<td>實驗認識化學反應速率及影響反應速率的因素，例如：本性、溫度、濃度、接觸面積。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第四學習階段學習內容</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Je-IV-2</td>
<td>及催化劑。</td>
</tr>
<tr>
<td></td>
<td>Je-IV-3</td>
<td>可逆反應。</td>
</tr>
<tr>
<td></td>
<td>Je-IV-2</td>
<td>化學平衡及溫度、濃度如何影響化學平衡的因素。</td>
</tr>
<tr>
<td>有機化合物的性質、製備及反應（Jf）</td>
<td>Jf-IV-1</td>
<td>有機化合物與無機化合物的重要特徵。</td>
</tr>
<tr>
<td></td>
<td>Jf-IV-2</td>
<td>生活中常見的烷類、醇類、有機酸及酯類。</td>
</tr>
<tr>
<td></td>
<td>Jf-IV-3</td>
<td>酯化與皂化反應。</td>
</tr>
<tr>
<td></td>
<td>Jf-IV-4</td>
<td>常見的塑膠。</td>
</tr>
<tr>
<td>自然界的現象與交互作用（K）</td>
<td>波動、光及聲音（Ka）</td>
<td>波的特徵，例如：波峰、波谷、波長、頻率、波速、振幅。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-1</td>
<td>波的傳播的類型，例如：橫波和縱波。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-2</td>
<td>介質的種類、狀態、密度及溫度等因素影響聲音傳播的速率。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-3</td>
<td>聲波會反射，可以做為測量、傳播等用途。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-4</td>
<td>耳朵可以分辨不同的聲音，例如：大小、高低及音色，但人耳聽不到超聲波。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-5</td>
<td>由針孔成像、影子實驗驗證與說明光的直進性。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-6</td>
<td>光速的大小和影響光速的因素。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-7</td>
<td>透過實驗探討光的反射與折射規律。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-8</td>
<td>生活中有許多運用光學原理的實例或儀器，例如：透鏡、面鏡、眼鏡及顯微鏡等。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-9</td>
<td>陽光經過三棱鏡可以分散成各種色光。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-10</td>
<td>物體的顏色是光選擇性反射的結果。</td>
</tr>
<tr>
<td></td>
<td>Ka-IV-11</td>
<td>萬有引力（Kb）</td>
</tr>
<tr>
<td></td>
<td>Kb-IV-1</td>
<td>物體在地球或月球等星體上因為星體的引力作用而具有重量;物體之質量與其重量是不同的物理量。</td>
</tr>
<tr>
<td></td>
<td>Kb-IV-2</td>
<td>帶質量的兩物體之間有重力，例如：萬有引力，此力大小與兩物體各自的質量成正比，與物體間距離的平方成反比。</td>
</tr>
<tr>
<td>電磁現象（Kc）</td>
<td>Kc-IV-1</td>
<td>摩擦可以產生靜電，電荷有正負之別。</td>
</tr>
<tr>
<td></td>
<td>Kc-IV-2</td>
<td>靜止帶電物體之間有靜電力，同號電荷會相斥，異號電荷則會相吸。</td>
</tr>
<tr>
<td></td>
<td>Kc-IV-3</td>
<td>磁場可以用磁力線表示，磁力線方向即為磁場方向，磁力線越密處磁場越大。</td>
</tr>
<tr>
<td></td>
<td>Kc-IV-4</td>
<td>電流會產生磁場，其方向分布可以由安培右手定則求得。</td>
</tr>
<tr>
<td></td>
<td>Kc-IV-5</td>
<td>截流導線在磁場會受力，並簡介電動機的運作原理。</td>
</tr>
<tr>
<td></td>
<td>Kc-IV-6</td>
<td>環形導線內磁場變化，會產生感應電流。</td>
</tr>
<tr>
<td></td>
<td>Kc-IV-7</td>
<td>電池連接導體形成通路時，多數導體通過的電流與其兩端電壓差成正比，其比值即為電阻。</td>
</tr>
<tr>
<td></td>
<td>Kc-IV-8</td>
<td>電流通過帶有電阻物體時，能量會以發熱的形式逸散。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第四學習階段學習內容</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>生物與環境（L）</td>
<td>生物間的交互作用（La）</td>
<td>La-IV-1 隨著生物間、生物與環境間的交互作用，生態系中的結構會隨時間改變，形成演替現象。</td>
</tr>
<tr>
<td></td>
<td>生物與環境的交互作用（Lb）</td>
<td>Lb-IV-1 生態系中的非生物因子會影響生物的分布與生存，環境調查時常需檢測非生物因子的變化。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lb-IV-2 人類活動會改變環境，也可能影響其他生物的生存。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lb-IV-3 人類可採取行動來維持生物的生存環境，使生物能在自然環境中生長、繁殖、交互作用，以維持生態平衡。</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>科學、技術及社會的互動關係（Ma）</td>
<td>Ma-IV-1 生命科學的進步，有助於解決社會中發生的農業、食品、能源、醫藥，以及環境相關的問題。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma-IV-2 保育工作不是只有科學家能夠處理，所有的公民都有權利及義務，共同研究、監控及維護生物多樣性。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma-IV-3 不同的材料對生活及社會的影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma-IV-4 各種發電方式與新興的能源科技對社會、經濟、環境及生態的影響。</td>
</tr>
<tr>
<td>科學發展的歷史（Mb）</td>
<td></td>
<td>Mb-IV-1 生物技術的發展是為了因應人類需求，運用跨領域技術來改造生物。發展相關技術的歷程中，也應避免對其他生物以及環境造成過度的影響。</td>
</tr>
<tr>
<td>科學在生活中的應用（Mc）</td>
<td></td>
<td>Mc-IV-1 生物生長條件與機制在處理環境汙染物質的應用。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mc-IV-2 運用生物體的構造與功能，可改善人類生活。</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>天然災害與防治（Md）</td>
<td>Md-IV-1 生物保育知識與技能在防治天然災害的應用。</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td></td>
<td>Md-IV-2 颱風主要發生在七至九月，並容易造成生命財產的損失。</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td></td>
<td>Md-IV-3 颱風會帶來狂風、豪雨及暴潮等災害。</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td></td>
<td>Md-IV-4 臺灣位處於板塊交界，因此地震頻仍，常造成災害。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第四學習階段學習內容</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>環境汙染與防治（Me）</td>
<td>Me-IV-1</td>
<td>環境汙染物對生物生長的影響及應用。</td>
</tr>
<tr>
<td></td>
<td>Me-IV-2</td>
<td>家庭廢水的影響與再利用。</td>
</tr>
<tr>
<td></td>
<td>Me-IV-3</td>
<td>空氣品質與空氣汙染的種類、來源及一般防治方法。</td>
</tr>
<tr>
<td></td>
<td>Me-IV-4</td>
<td>溫室氣體與全球暖化。</td>
</tr>
<tr>
<td></td>
<td>Me-IV-5</td>
<td>重金屬汙染的影響。</td>
</tr>
<tr>
<td></td>
<td>Me-IV-6</td>
<td>環境汙染物與生物放大的關係。</td>
</tr>
<tr>
<td></td>
<td>Me-IV-7</td>
<td>對聲音的特性做深入的研究可以幫助我們更確實防範噪音的汙染。</td>
</tr>
<tr>
<td>資源與永續發展（N）</td>
<td>Na-IV-1</td>
<td>利用生物資源會影響生物間相互依存的關係。</td>
</tr>
<tr>
<td></td>
<td>Na-IV-2</td>
<td>生活中節約能源的方法。</td>
</tr>
<tr>
<td></td>
<td>Na-IV-3</td>
<td>環境品質與永續利用維持生態平衡。</td>
</tr>
<tr>
<td></td>
<td>Na-IV-4</td>
<td>資源使用的 5R：減量、拒絕、重複使用、回收及再生。</td>
</tr>
<tr>
<td></td>
<td>Na-IV-5</td>
<td>各種廢棄物對環境的影響，環境的承載能力與處理方法。</td>
</tr>
<tr>
<td></td>
<td>Na-IV-6</td>
<td>人類社會的發展必須建立在保護地球自然環境的基礎上。</td>
</tr>
<tr>
<td></td>
<td>Na-IV-7</td>
<td>為使地球永續發展，可以從減量、回收、再利用、綠能等做起。</td>
</tr>
<tr>
<td>氣候變遷之影響與調適（Nb）</td>
<td>Nb-IV-1</td>
<td>全球暖化對生物的影響。</td>
</tr>
<tr>
<td></td>
<td>Nb-IV-2</td>
<td>氣候變遷產生的衝擊有海平面上升、全球暖化、異常降水等現象。</td>
</tr>
<tr>
<td></td>
<td>Nb-IV-3</td>
<td>因應氣候變遷的方法有減緩與調適。</td>
</tr>
<tr>
<td>能源的開發與利用（Nc）</td>
<td>Nc-IV-1</td>
<td>生質能源的發展現況。</td>
</tr>
<tr>
<td></td>
<td>Nc-IV-2</td>
<td>開發任何一種能源都有風險，應依據證據來評估與決策。</td>
</tr>
<tr>
<td></td>
<td>Nc-IV-3</td>
<td>化石燃料的形成與特性。</td>
</tr>
<tr>
<td></td>
<td>Nc-IV-4</td>
<td>新興能源的開發，例如：風能、太陽能、核融合發電、汽電共生、生質能、燃料電池等。</td>
</tr>
<tr>
<td></td>
<td>Nc-IV-5</td>
<td>新興能源的科技，例如：油電混合動力車、太陽能飛機等。</td>
</tr>
<tr>
<td></td>
<td>Nc-IV-6</td>
<td>臺灣能源的利用現況與未來展望。</td>
</tr>
</tbody>
</table>

2. 自然科學跨科主題

(1) 跨科主題：從原子到宇宙

<table>
<thead>
<tr>
<th>次主題</th>
<th>學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然界的尺度與單位（Ea）</td>
<td>IC-IV-1</td>
</tr>
<tr>
<td>細胞的構造與功能（Da）</td>
<td>IC-IV-2</td>
</tr>
<tr>
<td>生物圈的組成（Fc）</td>
<td></td>
</tr>
<tr>
<td>地球與太空（Fb）</td>
<td></td>
</tr>
</tbody>
</table>
測量時要選擇適當的尺度。不同物體間的尺度關係可以用比例的方式來呈現。原子與分子是組成生命世界與物質世界的微觀尺度。從個體到生物圈是組成生命世界的巨觀尺度。

(2) 跨科主題：能量與能源

<table>
<thead>
<tr>
<th>次主題</th>
<th>學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量的形式與轉換（Ba）</td>
<td>INa-IV-1 能量有多種不同的形式。</td>
</tr>
<tr>
<td>溫度與熱量（Bb）</td>
<td>INa-IV-2 能量之間可以轉換，且會維持定值。</td>
</tr>
<tr>
<td>生物體內的能量與代謝（Bc）</td>
<td>INa-IV-3 科學的發現與新能源，及其對生活與社會的影響。</td>
</tr>
<tr>
<td>生態系中能量的流動與轉換（Bd）</td>
<td>INa-IV-4 生活中各種能源的特性及其影響。</td>
</tr>
<tr>
<td>科學、技術及社會的互動關係（Ma）</td>
<td>INa-IV-5 能源開發、利用及永續性。</td>
</tr>
<tr>
<td>科學在生活中的應用（Mc）</td>
<td></td>
</tr>
<tr>
<td>永續發展與資源的利用（Na）</td>
<td></td>
</tr>
<tr>
<td>能源的開發與利用（Nc）</td>
<td></td>
</tr>
</tbody>
</table>

(3) 跨科主題：全球氣候變遷與調適

<table>
<thead>
<tr>
<th>次主題</th>
<th>學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量的形式與轉換（Ba）</td>
<td>INg-IV-1 地球上各系統的能量主要來源是太陽，且彼此之間有流動轉換。</td>
</tr>
<tr>
<td>溫度與熱量（Bb）</td>
<td>INg-IV-2 大氣組成中的變動氣體有些是溫室氣體。</td>
</tr>
<tr>
<td>生態系中能量的流動與轉換（Bd）</td>
<td>INg-IV-3 不同物質受熱後，其溫度的變化可能不同。</td>
</tr>
<tr>
<td>生物與環境的交互作用（Lb）</td>
<td>INg-IV-4 碳元素在自然界中的儲存與流動。</td>
</tr>
<tr>
<td>科學、技術及社會的互動關係（Ma）</td>
<td>INg-IV-5 生物活動會改變環境，環境改變之後也會影響生物活動。</td>
</tr>
<tr>
<td>環境汙染與防治（Me）</td>
<td>INg-IV-6 新興科技的發展對自然環境的影響。</td>
</tr>
<tr>
<td>氣候變遷之影響與調適（Nb）</td>
<td>INg-IV-7 溫室氣體與全球暖化的關係。</td>
</tr>
<tr>
<td></td>
<td>INg-IV-8 氣候變遷產生的衝擊是全球性的。</td>
</tr>
<tr>
<td></td>
<td>INg-IV-9 因應氣候變遷的方法，主要有減緩與調適兩種途徑。</td>
</tr>
</tbody>
</table>

三、普通型高中必修課程學習重點

(一) 學習表現

<table>
<thead>
<tr>
<th>項目</th>
<th>子項</th>
<th>第五學習階段學習表現（必修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>探究能力 - 思考智能（t）</td>
<td>ti-Vc-1</td>
<td>能主動察覺生活中各種自然科學問題的成因，並能根據已知的科學知識提出解決問題的各種假設想法，進而以個人或團體方式設計創新的科學探索方式並得到成果。</td>
</tr>
<tr>
<td>推理論證（r）</td>
<td>tr-Vc-1</td>
<td>能運用簡單的數理演算公式及單一的科學證據或理論，理解自然科學知識或理論及其因果關係，或提出他人論點的限制，進而提出不同的論點。</td>
</tr>
<tr>
<td>項目</td>
<td>子項</td>
<td>第五學習階段學習表現（必修）</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>批判思辨（c）</td>
<td>tc-Vc-1</td>
<td>能比較與判斷自己及他人對於科學資料的解釋在方法及程序上的合理性，並能提出問題或意見。</td>
</tr>
<tr>
<td>建立模型（m）</td>
<td>tm-Vc-1</td>
<td>能依據科學問題自行運思或經由合作討論來建立模型，並能使用例如：「比擬或抽象」的形式來描述一個系統化的科學現象，進而了解模型有其局限性。</td>
</tr>
<tr>
<td>探究能力 -</td>
<td>觀察與定題（o）</td>
<td>po-Vc-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>po-Vc-2</td>
</tr>
<tr>
<td></td>
<td>計劃與執行（e）</td>
<td>pe-Vc-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pe-Vc-2</td>
</tr>
<tr>
<td></td>
<td>分析與發現（a）</td>
<td>pa-Vc-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pa-Vc-2</td>
</tr>
<tr>
<td></td>
<td>討論與傳達（c）</td>
<td>pc-Vc-1</td>
</tr>
</tbody>
</table>
| | | pc-Vc-2 | 能利用口語、影像（例如：攝影、錄影）、文字與圖案、繪圖或實物、科學名詞、數學
科學的態度與本質（a）

<table>
<thead>
<tr>
<th>項目</th>
<th>子項</th>
<th>第五學習階段學習表現（必修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>培養科學探究的興趣（i）</td>
<td>ai-Vc-1</td>
<td>透過成功的問題解決經驗，獲得成就感。</td>
</tr>
<tr>
<td></td>
<td>ai-Vc-2</td>
<td>透過科學探索與科學思考對生活週遭的事物產生新的體驗及興趣。</td>
</tr>
<tr>
<td></td>
<td>ai-Vc-3</td>
<td>體會生活中處處都會運用到科學，而能欣賞科學的重要性。</td>
</tr>
<tr>
<td>養成應用科學思考與探究的習慣（h）</td>
<td>ah-Vc-1</td>
<td>了解科學知識是人們理解現象的一種解釋，但不是唯一的解釋。</td>
</tr>
<tr>
<td></td>
<td>ah-Vc-2</td>
<td>對日常生活中所獲得的科學資訊抱持批判的態度，審慎檢視其真實性與可信度。</td>
</tr>
<tr>
<td>識別科學本質（n）</td>
<td>an-Vc-1</td>
<td>了解科學探究過程採用多種方法、工具和技術，經由不同面向的證據支持特定的解釋，以增強科學論點的有效性。</td>
</tr>
<tr>
<td></td>
<td>an-Vc-2</td>
<td>了解科學的認知方式講求經驗證據性、合乎邏輯性、存疑和反覆檢視。</td>
</tr>
<tr>
<td></td>
<td>an-Vc-3</td>
<td>體認科學能幫助人類創造更好的生活條件，但並不能解決人類社會所有的問題，科技發展有時也會引起環境或倫理道德的議題。</td>
</tr>
</tbody>
</table>

(二) 學習內容

1. 生物

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（必修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物體的構造與功能（D）</td>
<td>細胞的構造與功能（Da）</td>
<td>BDa-Vc-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Vc-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Vc-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Vc-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Vc-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Vc-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Vc-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Vc-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Vc-9</td>
</tr>
<tr>
<td>演化與延續（G）</td>
<td>生殖與遺傳（Ga）</td>
<td>BGa-Vc-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Vc-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Vc-3</td>
</tr>
</tbody>
</table>
2. 物理

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（必修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量的形式、轉換及流動（B）</td>
<td>能量的形式與轉換（Ba）</td>
<td>PBa-Vc-1 電場以及磁場均具有能量，利用手機傳遞訊息即電磁場以電磁波的形式來傳遞能量的實例。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBa-Vc-2 不同形式的能量間可以轉換，且總能量守恆。能量的形式因觀察尺度的不同，而有不同的展現與說明。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBa-Vc-3 質量及能量可以相互轉換，其轉換公式為 (E = mc^2)。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBa-Vc-4 原子核的融合以及原子核的分裂是質量可以轉換為能量的應用實例，且為目前重要之能源議題。</td>
</tr>
<tr>
<td>溫度與熱量（Bb）</td>
<td></td>
<td>PBb-Vc-1 克氏溫標的意義及理想氣體的內能的簡單說明。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBb-Vc-2 實驗顯示：把功轉換成熱很容易，卻無法把熱完全轉換為功。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBb-Vc-3 物體內的原子不斷在運動並交互作用，此交互作用能量與原子的動能合稱為熱能。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBb-Vc-4 由於物體溫度的不同所造成的能量傳遞稱為熱。</td>
</tr>
<tr>
<td>物質系統（E）</td>
<td>自然界的尺度與單位（Ea）</td>
<td>PEa-Vc-1 科學上常用的物理量有國際標準單位。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PEa-Vc-2 因工具的限制或應用上的方便，許多自然科學所需的測量，包含物理量，是經由基本物理量的測量再計算而得。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PEa-Vc-3 原子的大小約為 (10^{-10}) 公尺，原子核的大小約為 (10^{-15}) 公尺。</td>
</tr>
</tbody>
</table>
| | | PEb-Vc-1 伽利略之前學者對物體運動的觀察與思
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（必修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然界的現象
與交互作用 (K)</td>
<td>波動、光及聲音
(Ka)</td>
<td>PKa-Vc-1 波速、頻率、波長的數學關係。
PKa-Vc-2 定性介紹都卜勒效應及其應用。
PKa-Vc-3 歷史上光的主要理論有微粒說和波動說。
PKa-Vc-4 光的反射定律，並以波動理論解釋折射定律。
PKa-Vc-5 光除了反射和折射現象外，也有干涉和繞射現象。
PKa-Vc-6 惠更斯原理可以解釋光波如何前進、干涉和繞射。
PKa-Vc-7 馬克士威方程式預測電磁波的存在，且計算出電磁波的速度等於光速，因此推論光是一種電磁波，後來也獲得實驗的證明。</td>
</tr>
<tr>
<td>萬有引力 (Kb)</td>
<td>PKb-Vc-1 牛頓運動定律結合萬有引力定律可用以解釋克卜勒行星運動定律。
PKb-Vc-2 物體在重力場中運動的定性描述。</td>
<td></td>
</tr>
<tr>
<td>電磁現象 (Kc)</td>
<td>PKc-Vc-1 電荷會產生電場，兩點電荷間有電力，此力量值與兩點電荷所帶電荷量成正比，與兩點電荷間的距離平方成反比。
PKc-Vc-2 原子內帶電荷的電子與帶正電的原子核以電力互相吸引，形成穩定的原子結構。
PKc-Vc-3 變動的磁場會產生電場，變動的電場會產生磁場。
PKc-Vc-4 所有的電磁現象經統整後，皆可由馬克士威方程式描述。
PKc-Vc-5 馬克士威方程式預測電磁場的現象可以在空氣中傳遞，即為電磁波。
PKc-Vc-6 電磁波包含低頻率的無線電波，到高頻率的伽瑪射線在日常生活中有廣泛的應用。</td>
<td></td>
</tr>
<tr>
<td>量子現象 (Kd)</td>
<td>PKd-Vc-1 光具有粒子性，光子能量 $E=h\nu$，與其頻率 ν 成正比。
PKd-Vc-2 光電效應在日常生活中之應用。
PKd-Vc-3 原子光譜。
PKd-Vc-4 能階的概念。
PKd-Vc-5 電子的雙狹縫干涉現象與其波動性。
PKd-Vc-6 光子與電子以及所有微觀粒子都具有波粒二象性。
PKd-Vc-7 牛頓運動定律在原子尺度以下並不適用。</td>
<td></td>
</tr>
<tr>
<td>基本交互作用 (Ke)</td>
<td>PKe-Vc-1 原子核內的質子與質子、質子與中子、中子與中子之間有強力使它們互相吸引。</td>
<td></td>
</tr>
</tbody>
</table>
3. 化學

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（必修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質的組成與特性（A）</td>
<td>物質組成與元素的週期性（Aa）</td>
<td>CAA-Vc-1</td>
</tr>
<tr>
<td></td>
<td>能量的形式、轉換及流動（B）</td>
<td>CBa-Vc-1</td>
</tr>
<tr>
<td></td>
<td>物質的結構與功能（C）</td>
<td>CCb-Vc-1</td>
</tr>
<tr>
<td></td>
<td>物質系統（E）</td>
<td>CEc-Vc-1</td>
</tr>
<tr>
<td></td>
<td>物質的反應、平衡及製造（J）</td>
<td>CJa-Vc-1</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第五學習階段學習內容（必修）</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>水溶液中的變化 (Jb)</td>
<td>CJb-Vc-1</td>
<td>溶液的種類與特性。</td>
</tr>
<tr>
<td></td>
<td>CJb-Vc-2</td>
<td>定量說明物質在水中溶解的程度會受到水溫的影響。</td>
</tr>
<tr>
<td></td>
<td>CJb-Vc-3</td>
<td>體積莫耳濃度的表示法。</td>
</tr>
<tr>
<td>氧化與還原反應 (Jc)</td>
<td>CJc-Vc-1</td>
<td>氧化還原的廣義定義為：物質失去電子成為氧化反應；得到電子成為還原反應。</td>
</tr>
<tr>
<td></td>
<td>CJc-Vc-2</td>
<td>氧化劑與還原劑的定義及常見氧化劑與還原劑。</td>
</tr>
<tr>
<td>酸鹼反應 (Jd)</td>
<td>CJd-Vc-1</td>
<td>水可自解離產生H⁺與OH⁻。</td>
</tr>
<tr>
<td></td>
<td>CJd-Vc-2</td>
<td>根據阿瑞尼斯的酸鹼學說，物質溶於水中，可解離出H⁺為酸；可解離出OH⁻為鹼。</td>
</tr>
<tr>
<td></td>
<td>CJd-Vc-3</td>
<td>pH = −log[H⁺]，此數值可代表水溶液的酸鹼程度。</td>
</tr>
<tr>
<td></td>
<td>CJd-Vc-4</td>
<td>在水溶液中可幾乎100%解離的酸或鹼，稱為強酸或強鹼；反之則稱為弱酸或弱鹼。</td>
</tr>
<tr>
<td>化學反應速率與平衡 (Je)</td>
<td>CJe-Vc-1</td>
<td>定溫時，飽和溶液的溶質溶解度為定值，其溶質溶解與結晶達到平衡。</td>
</tr>
<tr>
<td></td>
<td>CJe-Vc-2</td>
<td>物質的接觸面積大小對反應速率之影響。</td>
</tr>
<tr>
<td>有機化合物的性質、製備與反應 (Jf)</td>
<td>CJf-Vc-1</td>
<td>醣類、蛋白質、油脂及核酸的性質與功能。</td>
</tr>
<tr>
<td></td>
<td>CJf-Vc-2</td>
<td>常見的界面活性劑包括肥皂與清潔劑，其組成包含親油性的一端和親水性的一端。</td>
</tr>
<tr>
<td></td>
<td>CJf-Vc-3</td>
<td>界面活性劑的性質與應用。</td>
</tr>
<tr>
<td>科學、科技、社會及人文 (M)</td>
<td>CMa-Vc-1</td>
<td>化學製造流程對日常生活、社會、經濟、環境及生態的影響。</td>
</tr>
<tr>
<td></td>
<td>CMb-Vc-1</td>
<td>近代化學科學的發展，以及不同性別、背景、族群者於其中的貢獻。</td>
</tr>
<tr>
<td></td>
<td>CMb-Vc-2</td>
<td>未來科學的發展。</td>
</tr>
<tr>
<td></td>
<td>CMc-Vc-1</td>
<td>水的處理過程。</td>
</tr>
<tr>
<td></td>
<td>CMc-Vc-2</td>
<td>生活中常見的藥品。</td>
</tr>
<tr>
<td></td>
<td>CMc-Vc-3</td>
<td>化學在先進科技發展的應用。</td>
</tr>
<tr>
<td></td>
<td>CMe-Vc-1</td>
<td>酸雨的成因、影響及防治方法。</td>
</tr>
<tr>
<td></td>
<td>CMe-Vc-2</td>
<td>全球暖化的成因、影響及因應方法。</td>
</tr>
<tr>
<td></td>
<td>CMe-Vc-3</td>
<td>臭氧層破洞的成因、影響及防治方法。</td>
</tr>
<tr>
<td></td>
<td>CMe-Vc-4</td>
<td>工業廢水的影響與再利用。</td>
</tr>
<tr>
<td>資源與永續發展 (N)</td>
<td>CNa-Vc-1</td>
<td>永續發展在於滿足當代人之需求，又不危及下一代之發展。</td>
</tr>
<tr>
<td></td>
<td>CNa-Vc-2</td>
<td>將永續發展的理念應用於生活中。</td>
</tr>
<tr>
<td></td>
<td>CNa-Vc-3</td>
<td>水資源回收與再利用。</td>
</tr>
<tr>
<td></td>
<td>CNa-Vc-4</td>
<td>水循環與碳循環。</td>
</tr>
<tr>
<td>能源的開發與利用 (Nc)</td>
<td>CNc-Vc-1</td>
<td>新興能源與替代能源在臺灣的發展現況。</td>
</tr>
</tbody>
</table>
4. 地球科學

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（必修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質系統 (E)</td>
<td>宇宙與天體 (Ed)</td>
<td>EEd-Vc-1 我們的宇宙由各種不同尺度的天體所組成，且正在膨脹。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Vc-2 天體的亮度與光度用視星等與絕對星等來表示。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Vc-3 天文觀測可在不同的電磁波段進行。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Vc-4 恆星的顏色可用來了解恆星的表面溫度。</td>
</tr>
<tr>
<td>地球環境 (F)</td>
<td>組成地球的物質 (Fa)</td>
<td>EFa-Vc-1 由地震波可以協助了解固體地球具有不同性質的分層。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Vc-2 固體地球各分層之化學組成與物理狀態不同。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Vc-3 大氣溫度與壓力會隨高度而變化。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Vc-4 海洋表水鹽度主要受降水、蒸發及河川注入等因素影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Vc-5 海水的溫度隨深度和水平分布而變化。</td>
</tr>
<tr>
<td>地球與太空 (Fb)</td>
<td></td>
<td>EFb-Vc-1 由地球觀察恆星的視運動可以分成周日運動與周年運動。</td>
</tr>
<tr>
<td>地球的歷史 (H)</td>
<td>地球的起源與演變 (Ha)</td>
<td>EHa-Vc-1 天文學家以太陽星雲學說來解釋太陽系的起源和形成。太陽系是由太陽、行星、衛星、小行星和彗星等天體組成。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EHa-Vc-2 與其他類地行星及太陽系小天體相較，地球獨一無二的環境，極為適合生命的發生和繁衍。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EHa-Vc-3 在地球大氣演化過程中，海洋與生物扮演著極其重要的角色。</td>
</tr>
<tr>
<td>地層與化石 (Hb)</td>
<td></td>
<td>EHB-Vc-1 化石可以作為地層的相對地質年代對比的輔助工具。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EHB-Vc-2 利用岩層中的化石與放射性同位素定年法，可協助推論地層的絕對地質年代。</td>
</tr>
<tr>
<td>變動的地球 (I)</td>
<td>地表與地殼的變動 (Ia)</td>
<td>EIA-Vc-1 科學家曾經提出大陸漂移、海底擴張及板塊構造等主要學說，來解釋變動中的固體地球。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIA-Vc-2 板塊邊界可分為聚合、張裂及錯動三大類型。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIA-Vc-3 板塊邊界有各種不同的地質作用與岩漿活動。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIA-Vc-4 由地質構造與震源分布等特徵，可推論臺灣位於聚合型板塊邊界。</td>
</tr>
<tr>
<td>天氣與氣候變化 (Ib)</td>
<td></td>
<td>EIB-Vc-1 一定氣壓下，氣溫越高，空氣所能容納的水氣含量越高。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIB-Vc-2 當水氣達到飽和時，多餘的水氣會凝結或凝固。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIB-Vc-3 空氣中的水氣量可以用溫度來表示。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIB-Vc-4 空氣上升時會因為膨脹而降溫。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第五學習階段學習內容（必修）</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>海水的運動（Ic）</td>
<td>EIc-Vc-1</td>
<td>表面海流受盛行風的影響。</td>
</tr>
<tr>
<td></td>
<td>EIc-Vc-2</td>
<td>波浪形成的主因為風吹海面，而波浪會影響海岸地形。</td>
</tr>
<tr>
<td></td>
<td>EIc-Vc-3</td>
<td>潮汐的變化受到日地月系統的影響有週期性。</td>
</tr>
<tr>
<td></td>
<td>EIc-Vc-4</td>
<td>臺灣海峽的潮流運動隨地點不同而有所差異。</td>
</tr>
<tr>
<td>畫夜與季節（Id）</td>
<td>EId-Vc-1</td>
<td>太陽每日於天空中的位置會隨季節而改變。</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>EMd-Vc-1</td>
<td>颱風形成有其必要條件與機制。</td>
</tr>
<tr>
<td></td>
<td>EMd-Vc-2</td>
<td>颱風是一個螺旋雲帶結構，中心氣壓最低。</td>
</tr>
<tr>
<td></td>
<td>EMd-Vc-3</td>
<td>高臺颱風的路徑主要受太平洋高壓所引導，不同路徑對台灣各地的風雨影響不同。</td>
</tr>
<tr>
<td></td>
<td>EMd-Vc-4</td>
<td>臺灣位在活躍的板塊交界，斷層活動引發的地震及所導致的災害常造成巨大的損失。</td>
</tr>
<tr>
<td>資源與永續發展（N）</td>
<td>ENa-Vc-1</td>
<td>永續發展對地球與人類的延續有其重要性。</td>
</tr>
<tr>
<td></td>
<td>ENa-Vc-2</td>
<td>節用資源與合理開發，可以降低人類對地球環境的影響，以利永續發展。</td>
</tr>
<tr>
<td></td>
<td>ENa-Vc-3</td>
<td>認識地球環境有助於經濟、生態、文化及政策四個面向的永續發展。</td>
</tr>
<tr>
<td>氣候變遷之影響與調適（Nb）</td>
<td>ENb-Vc-1</td>
<td>氣候變化有多重時間尺度的特性。</td>
</tr>
<tr>
<td></td>
<td>ENb-Vc-2</td>
<td>冰期與間冰期的氣溫變化及海平面的升降，對全球生物與自然環境會造成影響。</td>
</tr>
<tr>
<td></td>
<td>ENb-Vc-3</td>
<td>過去主導地球長期的自然氣候變化的原理並無法完全用來解釋近幾十年來快速的氣候變遷情形。根據目前科學證據了解人類活動是主要因素。</td>
</tr>
<tr>
<td></td>
<td>ENb-Vc-4</td>
<td>因應氣候變遷的調適有許多面向與方法。</td>
</tr>
</tbody>
</table>

5. 「自然科學探究與實作」課程內容

普通型高級中等學校「自然科學探究與實作」課程內容屬於新設必修領域課程內容，共佔自然科學領域部定必修學分數三分之一，可以分兩學期實施。旨在以實作的過程，針對物質與生命世界培養學生發現問題、認識問題、問題解決，以及提出結論與表達溝通之能力。
本課程內容含有探究本質的實作活動、跨科的學習素材、多元的教法與評量方式，培養學生自主行動、表達、溝通互動和實務參與之核心素養。主要是提供學生體驗科學探究歷程與問題解決的學習環境和機會；促進正向科學態度和提升科學學習動機；培養科學思考與發現關鍵問題的能力；探索科學知識發展與科學社群運作的特徵，藉此認識科學本質。另外，此領域課程乃延續國民小學至國民中學教育階段探究與實作國民科學素養之培育，故列為必修課程內容。

自然科學探究與實作課程內容在於提供學生統整的學習經驗，強調跨學科之間的整合，以綜合運用自然科學領域的七項跨科概念（物質與能量、構造與功能、系統與尺度、改變與穩定、交互作用、科學與生活、資源與永續性），期能學理與實踐相互為用。學習系統性知識及跨領域對話與思考，以實用性及生活化的題材和議題為主，因此自然科學探究與實作的內容採取不分科為原則。透過適當提問的主題探討和實作活動，引導學生體驗科學實踐的歷程，循序建構高層次獨立思考及團隊合作的能力，進而成為具有科學素養並能理性積極參與公眾決策的未來公民，以達適性揚才的教育目標。

自然科學探究與實作的學習重點分為「探究學習內容」和「實作學習內容」兩部分。「探究學習內容」著重於科學探究歷程，可歸納為四個主要項目：發現問題、規劃與研究、論證與建模、表達與分享，各主要項目下包含的細項詳見下表。「實作學習內容」為可實際進行操作的科學活動，例如：觀察、測量、資料蒐集與分析、歸納與解釋、論證與結論等。探究與實作學習內容各項目未必有固定的步驟順序，可依探究的主題和實作活動採循環或遞迴等方式進行。

<table>
<thead>
<tr>
<th>探究學習內容</th>
<th>實作學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>◎發現問題，基於好奇、求知或需要，觀察生活周遭和外在世界現象，察覺可探究的問題，進而蒐集整理所需的資訊，釐清並訂定可解決或可測試的研究問題，預測可能的結果，提出想法、假說或模型。</td>
<td>視察現象，從日常經驗、學習活動、自然環境、書刊或網路媒體等，進行多方觀察。運用感官或儀器辨識物體和現象的特性。依時間或空間的不同以觀察物體和現象的變化。推測所觀察現象的可能成因。</td>
</tr>
<tr>
<td>蒐集資訊</td>
<td>利用報紙、圖書、網路與媒體蒐集相關資訊，並判斷資訊來源的可靠性。閱讀與理解資訊內容。整理並提取適當的資訊。</td>
</tr>
<tr>
<td>形成或訂定問題</td>
<td>依觀察所得，經由蒐集資訊、閱讀和討論等過程，提出適合科學探究的問題。當有多個問題同時存在時，能分辨並選擇優先重要之問題。</td>
</tr>
<tr>
<td>提出或可驗證的觀點</td>
<td>依據選定的問題提出想法、假說或模型。</td>
</tr>
<tr>
<td>◎規劃與研究，根據提出的問題</td>
<td>尋找變因或條件</td>
</tr>
<tr>
<td>探究學習內容</td>
<td>實作學習內容</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>探究學習內容</td>
<td>實作學習內容</td>
</tr>
<tr>
<td>題,擬定研究計 畫和進度。辨明 影響結果的變 因,選擇或設計 適當的工具或 儀器觀測,以獲 得有效的資料 數據,或根據預 期目標並經由 測試結果檢視 最佳化條件。</td>
<td>•合理的預測探究的可能結果。</td>
</tr>
<tr>
<td>擬定研究計畫</td>
<td>•依根據所提出的問題,計畫適當的方法、材料、設備與 流程。</td>
</tr>
<tr>
<td>收集資料數據</td>
<td>•應用或組裝合適的器材與儀器。</td>
</tr>
<tr>
<td>•正確且安全的操作器材設備。</td>
<td>•設計適當的紀錄格式並詳實記錄。</td>
</tr>
<tr>
<td>•有系統性地收集定性或定量的資料數據或檢視最佳化 條件。</td>
<td>◎論證與建模</td>
</tr>
<tr>
<td>分析資料數據</td>
<td>•使用資訊與數學等方法，有效整理資料數據。</td>
</tr>
<tr>
<td>分析資料和呈 現證據</td>
<td>•依根據整理後的資料數據，製作圖表。</td>
</tr>
<tr>
<td>解釋和推理</td>
<td>•由探究過程所得的資料數據，整理出規則，提出分析 結果與相關證據。</td>
</tr>
<tr>
<td>•比較自己、同學與其他相關的資訊或證據的合理性 与 正確性。</td>
<td>•根據探究結果形成解釋。</td>
</tr>
<tr>
<td>提出結論或解 決方案</td>
<td>•由資料數據的變化趨勢，看出其蘊含的意義。</td>
</tr>
<tr>
<td>•由資料數據顯示的相關性，推測其背後可能的因果關 係。</td>
<td>•由探究數據顯示的相關性，推測其背後可能的因果關 係。</td>
</tr>
<tr>
<td>•根據探究結果形成解釋。</td>
<td>◎表達與分享</td>
</tr>
<tr>
<td>建立模型</td>
<td>•嘗試由探究數據建立合理模型以描述所觀察的現象。</td>
</tr>
<tr>
<td>•察覺模型的侷限性。</td>
<td>表達與溝通</td>
</tr>
<tr>
<td>運用適當的溝 通工具呈現重 要發現，與他人 分享科學新知 與想法，推廣個 人或團隊的研 究成果。</td>
<td>•適當利用口語、文字、圖像、影音或實物等表達方式， 呈現自己或理解他人的探究過程與成果。</td>
</tr>
<tr>
<td>表達與溝通</td>
<td>•正確運用科學名詞、符號或模型，呈現自己或理解他 人的探究過程與成果。</td>
</tr>
<tr>
<td>•有條理且具科學性的陳述探究成果。</td>
<td>•探索科學探究重要發現與模型的優點和限制，並提 出合理的疑問或提出改善方案。</td>
</tr>
<tr>
<td>•運用各種資源與他人分享科學資訊。</td>
<td>評價與省思</td>
</tr>
<tr>
<td>合作與討論</td>
<td>•傾聽他人的報告，並能提出具體的意見或建議。</td>
</tr>
<tr>
<td>•評估同學的探究過程、結果或模型的優點和限制，並 提出合理的疑問或提出改善方案。</td>
<td>由探究所得的解釋形成論點。</td>
</tr>
<tr>
<td>•由探究結果形成結論、新的概念或問題。</td>
<td>•探索科學探究重要發現與模型的優點和限制，並 提出合理的疑問或提出改善方案。</td>
</tr>
<tr>
<td>•檢核自己、同學的結論與其他相關的資訊或證據的異 同。</td>
<td>評價與省思</td>
</tr>
<tr>
<td>由資料數據的變化趨勢，看出其蘊含的意義。</td>
<td>•反思探究成果的應用性、限制性及改進之處。</td>
</tr>
<tr>
<td>•由資料數據顯示的相關性，推測其背後可能的因果關 係。</td>
<td>•對各類科學資訊進行評估與判斷，審慎檢視其真實性 與可信度。</td>
</tr>
<tr>
<td>評價與省思</td>
<td>•體驗科學探究重要發現與模型的優點和限制，並提出 合乎邏輯的推論，以及探究結果的再現性。</td>
</tr>
<tr>
<td>•了解科學知識是人們理解現象的一種解釋，但不是唯 一的解釋。</td>
<td></td>
</tr>
</tbody>
</table>
四、普通型高中加深加廣選修課程學習重點

（一）學習表現

<table>
<thead>
<tr>
<th>項目</th>
<th>子項</th>
<th>第五學習階段學習表現（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>探究能力</td>
<td>想像創造（i）</td>
<td>ti-Va-1 能獨立察覺各種自然科學問題的成因，並能依不同情況發想各種假設及可行的解決方法，進而以個人或團體方式設計不同的實驗步驟，或創造新的實驗方法。</td>
</tr>
<tr>
<td>推理論證（r）</td>
<td>tr-Va-1 能運用一系列的科學證據或理論，以及類比、轉換等演繹推理方式，理解並推導自然現象的因果關係，或修正、說明自己提出的論點。</td>
<td></td>
</tr>
<tr>
<td>批判思辨（c）</td>
<td>tc-Va-1 能比較科學事實在不同論點、證據或事實解釋的合理性，並透過探索證據、挑戰思想、回應多元觀點的過程，進行批判論點或判斷科學證據的正確性。</td>
<td></td>
</tr>
<tr>
<td>建立模型（m）</td>
<td>tm-Va-1 能依據科學問題自行運思或經由合作討論來建立模型，並使用例如：「比擬或抽象」的形式來描述一個系統化的科學現象。進而能分析各種模型的特性，且了解模型可隨著對科學事物複雜關係的認知增加來修正。</td>
<td></td>
</tr>
<tr>
<td>探究能力</td>
<td>觀察與定題（o）</td>
<td>po-Va-1 po-Va-2 能從學習活動、日常經驗及科技運用、自然環境、書刊及網路媒體中，進行各種有意義、有效率的觀察，進而能察覺問題。能依據觀察、蒐集資料、閱讀、思考、討論等，確認並提出與生活周遭或學術探索相關，而適合科學探究或適合以科學方式尋求解決的關鍵問題（或假說）。當有多個問題同時存在時，能分辨並擇定優先重要之問題（或假說）。</td>
</tr>
<tr>
<td>計劃與執行（e）</td>
<td>pe-Va-1 pe-Va-2 能辨明多個自變項或應變項並計劃適當次數的測試、嚴謹地預測活動的可能結果和可能失敗的原因。在有限的指導下，能依據指導或展現創意，依據問題特性、學習資源（設備、時間、人力等）、預期成果（包括信效度）、對社會環境的影響等因素，有效率地規劃最佳化的實作（或推理）探究活動或問題解決活動。能正確安全操作適合學習階段的物品、器材儀器、科技設備及資源。能進行精確、高效率之的質性觀察或數值量測，視需要能運用科技儀器輔助記錄。</td>
<td></td>
</tr>
<tr>
<td>分析與發現（a）</td>
<td>pa-Va-1 能流暢運用思考智能、製作圖表、使用資料及數學等方法，以有效整理資訊或數據。</td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>子項</td>
<td>第五學習階段學習表現（加深加廣選修）</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>pa-Va-2</td>
<td>能運用科學原理、思考智能、數學、統計等方法，從所得的資訊或數據，形成解釋、發現新知、獲知因果關係、理解科學問題、解決問題或是發現新的問題。並能將自己的結果和同學的結果或其他相關的資訊比較對照，相互檢核，確認結果；如果結果不同，能進一步探究原因。</td>
</tr>
<tr>
<td>討論與傳達（c）</td>
<td>pc-Va-1</td>
<td>能理解同學的探究過程和結果（或經簡化過的科學報告），提出合理而且較完整的疑問或意見。並能對整個探究過程中：包括，觀察定題、推理實作、數據信效度、資源運用、活動安全、探究結果等，進行反思、形成評價與改善方案，作為未來改進與提升能力的基礎。</td>
</tr>
<tr>
<td></td>
<td>pc-Va-2</td>
<td>能利用口語、影像（例如：攝影、錄影）、文字與圖案、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或成果，並選擇合適的發表方式和途徑。視需要，並能摘要描述目的、特徵、方法、發現、價值、限制、運用及展望等。</td>
</tr>
<tr>
<td>科學的態度與本質（a）</td>
<td>ai-Va-1</td>
<td>培養科學探究的興趣（i）了解科學能力是多元的，擁有熱誠是從事與科學或科技有關的工作最重要的條件。透過了解科學理論的簡約、科學思考的嚴謹與複雜自然現象背後的規律，學會欣賞科學的美。</td>
</tr>
<tr>
<td></td>
<td>ai-Va-2</td>
<td>了解科學工作者經常遵循某些特定的標準（例如：可推廣性、簡約性等）判斷探究活動的可行性。運用科學的思考模式，例如：邏輯思考、精確性、客觀性等標準，判斷日常生活中科學資訊的可信度。</td>
</tr>
<tr>
<td>養成應用科學思考與探究的習慣（h）</td>
<td>ah-Va-1</td>
<td>認識科學本質（n）了解從事科學工作者具有一些共同的特質，例如：邏輯思考、精確性、心智開放、客觀性、保持懷疑、研究結果的可重複性、誠實並符合倫理地發表研究成果等。察覺到相同的自然現象，可用多個理論解釋；當現有的證據同樣都支持著這些理論，人們傾向採用較簡約的理論。了解科學知識發展的歷史是與社會、文化、政治、經濟緊密相關。</td>
</tr>
<tr>
<td></td>
<td>ah-Va-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ah-Va-3</td>
<td></td>
</tr>
</tbody>
</table>
（二）學習內容

1. 生物

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物體的構造與功能（D）</td>
<td>細胞的構造與功能（Da）</td>
<td>BDa-Va-1 細胞的分子組成。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Va-2 生物膜的構造與功能。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Va-3 酶的功能與影響酶活性的因素。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Va-4 呼吸作用包括有氧呼吸、無氧呼吸及酶酵作用。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Va-5 能量流轉與生命維持的關係。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDa-Va-6 細胞的生命歷程。</td>
</tr>
<tr>
<td>動植物體的構造與功能（Db）</td>
<td></td>
<td>BDb-Va-1 動物組織的構造與功能。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-2 動物體的器官系統之構造與功能。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-3 動物體內恆定的生理意義與重要性。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-4 動物體對刺激的感應。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-5 動物體的神經系統對生理作用的調節。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-6 動物體的激素對生理作用的調節。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-7 動物體的防禦構造與功能。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-8 動物體的生殖與胚胎發育。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-9 植物體的組成層次。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-10 光合作用包括光反應與固碳反應。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-11 植物體的生殖。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-12 植物體內的物質運輸。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-13 植物激素會調節植物體的生理作用。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDb-Va-14 植物體對環境刺激的反應。</td>
</tr>
<tr>
<td>地球環境（F）</td>
<td>生物圈的組成（Fc）</td>
<td>BFc-Va-1 生態學的研究層級主要為個體、族群、群集、生態系及生物圈。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BFc-Va-2 臺灣主要的生態系可分為自然生態系與人工生態系。</td>
</tr>
<tr>
<td>演化與延續（G）</td>
<td>生殖與傳遞（Ga）</td>
<td>BGa-Va-1 遺傳的染色體學說的建立。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-2 確認 DNA 為遺傳物質的歷程。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-3 遺傳訊息的複製。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-4 遺傳訊息的轉錄與譯譯。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-5 基因表現的調控。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-6 遺傳變異。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-7 生物科技的應用。</td>
</tr>
<tr>
<td>演化（Gb）</td>
<td></td>
<td>BGb-Va-1 生源說與無生源說的爭論歷程。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGb-Va-2 從無機物到有機物的演變，探討生物起源的過程。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGb-Va-3 原核細胞形成的演化歷程。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGb-Va-4 真核細胞形成的演化歷程。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGb-Va-5 現代生物演化理論。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGb-Va-6 族群遺傳學。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGb-Va-7 演化與物種形成。</td>
</tr>
<tr>
<td>生物多樣性（Gc）</td>
<td></td>
<td>BGc-Va-1 生物多樣性包含遺傳多樣性、物種多樣性及生態系多樣性三個面向。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGc-Va-2 遺傳多樣性。</td>
</tr>
</tbody>
</table>
主題

<table>
<thead>
<tr>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BGc-Va-3</td>
</tr>
<tr>
<td></td>
<td>物種多樣性。</td>
</tr>
<tr>
<td></td>
<td>BGc-Va-4</td>
</tr>
<tr>
<td></td>
<td>生態系多樣性。</td>
</tr>
<tr>
<td></td>
<td>BGc-Va-5</td>
</tr>
<tr>
<td></td>
<td>造就臺灣生物多樣性的因素。</td>
</tr>
<tr>
<td></td>
<td>BGc-Va-6</td>
</tr>
<tr>
<td></td>
<td>生物多樣性的保育。</td>
</tr>
</tbody>
</table>

生物與環境（L）

<table>
<thead>
<tr>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLb-Va-1</td>
</tr>
<tr>
<td></td>
<td>生態學的研究層級。</td>
</tr>
<tr>
<td></td>
<td>BLb-Va-2</td>
</tr>
<tr>
<td></td>
<td>族群特徵包括族群大小、族群密度、族群成長曲線、生存曲線及年齡結構等。</td>
</tr>
<tr>
<td></td>
<td>BLb-Va-3</td>
</tr>
<tr>
<td></td>
<td>群集中族群間的交互作用、群集結構及演替。</td>
</tr>
<tr>
<td></td>
<td>BLb-Va-4</td>
</tr>
<tr>
<td></td>
<td>生態系中的非生物因子與生物因子、能量流轉及元素循環。</td>
</tr>
</tbody>
</table>

科學、科技、社會及人文（M）

<table>
<thead>
<tr>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMa-Va-1</td>
</tr>
<tr>
<td></td>
<td>探討代理孕母的倫理與法律問題。</td>
</tr>
<tr>
<td></td>
<td>BMa-Va-2</td>
</tr>
<tr>
<td></td>
<td>探討人類基因組計畫及其意義與重要性。</td>
</tr>
<tr>
<td></td>
<td>BMb-Va-1</td>
</tr>
<tr>
<td></td>
<td>從科學史的觀點, 探討生物膜的模型之發展歷程。</td>
</tr>
<tr>
<td></td>
<td>BMb-Va-2</td>
</tr>
<tr>
<td></td>
<td>從科學史的觀點, 探討生長素發現過程的相關實驗。</td>
</tr>
<tr>
<td></td>
<td>BMb-Va-3</td>
</tr>
<tr>
<td></td>
<td>從科學史的觀點, 說明遺傳的染色體學說之發展歷程。</td>
</tr>
<tr>
<td></td>
<td>BMb-Va-4</td>
</tr>
<tr>
<td></td>
<td>從科學史的觀點, 探討聯鎖的相關實驗與推論。</td>
</tr>
<tr>
<td></td>
<td>BMb-Va-5</td>
</tr>
<tr>
<td></td>
<td>從科學史的觀點, 探討確認 DNA 為遺傳物質之發展歷程。</td>
</tr>
<tr>
<td></td>
<td>BMb-Va-6</td>
</tr>
<tr>
<td></td>
<td>從科學史的觀點, 探討 DNA 分子結構模型之發展歷程。</td>
</tr>
<tr>
<td></td>
<td>BMb-Va-7</td>
</tr>
<tr>
<td></td>
<td>從科學史的觀點, 探討 DNA 複製為半保留複製模式之發展歷程。</td>
</tr>
<tr>
<td></td>
<td>BMb-Va-8</td>
</tr>
<tr>
<td></td>
<td>從科學史的觀點, 說明現代生物演化理論之發展歷程。</td>
</tr>
</tbody>
</table>

科學在生活中的應用（Mc）

<table>
<thead>
<tr>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMc-Va-1</td>
</tr>
<tr>
<td></td>
<td>生物科技的應用。</td>
</tr>
<tr>
<td></td>
<td>BMc-Va-2</td>
</tr>
<tr>
<td></td>
<td>以生態學的理論為基礎，規劃保育策略。</td>
</tr>
<tr>
<td></td>
<td>BMc-Va-3</td>
</tr>
<tr>
<td></td>
<td>可以實際案例，由研究、教育、立法或行政等方面來探討生物多樣性的保育。</td>
</tr>
</tbody>
</table>

資源與永續發展（N）

<table>
<thead>
<tr>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BNa-Va-1</td>
</tr>
<tr>
<td></td>
<td>棲地零碎化造成的邊緣效應對物種多樣性之影響。</td>
</tr>
<tr>
<td></td>
<td>BNa-Va-2</td>
</tr>
<tr>
<td></td>
<td>入侵外來種對物種多樣性之影響。</td>
</tr>
</tbody>
</table>

2. 物理

<table>
<thead>
<tr>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PBa-Va-1</td>
</tr>
<tr>
<td></td>
<td>功等於力和位移的向量內積，功率為功的時間變化率。</td>
</tr>
<tr>
<td></td>
<td>PBa-Va-2</td>
</tr>
<tr>
<td></td>
<td>功能定理。</td>
</tr>
<tr>
<td></td>
<td>PBa-Va-3</td>
</tr>
<tr>
<td></td>
<td>位能的定義。</td>
</tr>
<tr>
<td></td>
<td>PBa-Va-4</td>
</tr>
<tr>
<td></td>
<td>重力位能及彈簧位能的一般表示式。</td>
</tr>
<tr>
<td></td>
<td>PBa-Va-5</td>
</tr>
<tr>
<td></td>
<td>一般性的力學能守恆律與實例。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>溫度與熱量（Bb）</td>
<td>PBb-Va-1</td>
</tr>
<tr>
<td></td>
<td>PBb-Va-2</td>
</tr>
<tr>
<td></td>
<td>PBb-Va-3</td>
</tr>
<tr>
<td>物質系統（E）</td>
<td>自然界的尺度與單位（Ea）</td>
</tr>
<tr>
<td>力與運動（Eb）</td>
<td>PEb-Va-1</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-2</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-3</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-4</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-5</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-6</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-7</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-8</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-9</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-10</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-11</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-12</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-13</td>
</tr>
<tr>
<td></td>
<td>PEb-Va-14</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>自然界的現象與交互作用（K）</td>
<td>波動、光及聲音（Ka）</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>萬有引力（Kb）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>電磁現象（Kc）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>PKc-Va-8</td>
<td>載流導線在磁場中受力，可利用此特性設計電動機。</td>
</tr>
<tr>
<td>PKc-Va-9</td>
<td>在平面上運動的帶電質點受到垂直於平面之均勻磁場的作用，會受力並做等速圓周運動。</td>
</tr>
<tr>
<td>PKc-Va-10</td>
<td>磁通量的負時間變化率等於感應電動勢，此為法拉第定律。</td>
</tr>
<tr>
<td>PKc-Va-11</td>
<td>電壓和電流有直流電和交流電兩種。</td>
</tr>
<tr>
<td>PKc-Va-12</td>
<td>發電機與變壓器的原理皆為電磁感應。</td>
</tr>
<tr>
<td>PKc-Va-13</td>
<td>電場變化會產生磁場。</td>
</tr>
<tr>
<td>PKc-Va-14</td>
<td>電磁波在真空中傳播的速率由電磁常數決定，與頻率無關。</td>
</tr>
<tr>
<td>PKc-Va-15</td>
<td>平面電磁波的電場、磁場以及傳播方向互相垂直。</td>
</tr>
<tr>
<td>PKd-Va-1</td>
<td>用湯生陰極射線管及密立根油滴實驗測量電子的荷質比及電量。</td>
</tr>
<tr>
<td>PKd-Va-2</td>
<td>X 射線比起可見光來能量較高、波長較短，可用來分析晶體結構，並且有許多其他的應用。</td>
</tr>
<tr>
<td>PKd-Va-3</td>
<td>普朗克分析黑體輻射現象，提出量子論之解釋。</td>
</tr>
<tr>
<td>PKd-Va-4</td>
<td>愛因斯坦分析光電效應，提出光量子論。</td>
</tr>
<tr>
<td>PKd-Va-5</td>
<td>德布羅意提出物質波理論：物質都具有波與粒子的二象性，並經實驗驗證。</td>
</tr>
<tr>
<td>PKd-Va-6</td>
<td>拉塞福提出正電荷集中在核心，電子分布在在外的原子模型。</td>
</tr>
<tr>
<td>PKd-Va-7</td>
<td>波耳假設角動量的量子化，提出氫原子模型，成功解釋氫原子光譜。</td>
</tr>
<tr>
<td>PKd-Va-8</td>
<td>依照量子力學解釋，原子內之電子是以機率分布出現，沒有固定的古典軌道。</td>
</tr>
<tr>
<td>PKe-Va-1</td>
<td>質子和中子可組成結構穩定以及不穩定的原子核。</td>
</tr>
<tr>
<td>PKe-Va-2</td>
<td>不穩定的原子核會經由放射性衰變釋放能量或轉變為其他的原子核。</td>
</tr>
<tr>
<td>PKe-Va-3</td>
<td>基本交互作用遵循許多守恆律，例如：動量守恆、角動量守恆、質能守恆、電荷守恆。</td>
</tr>
<tr>
<td>PMb-Va-1</td>
<td>克卜勒定律和萬有引力定律的關係。</td>
</tr>
<tr>
<td>PMb-Va-2</td>
<td>伽利略的慣性原理和牛頓運動定律的關係。</td>
</tr>
<tr>
<td>PMc-Va-1</td>
<td>以物理原理解釋自然現象，例如：光的各種現象、天體運動、各種力的作用。</td>
</tr>
<tr>
<td>PMc-Va-2</td>
<td>電路、電磁波、透鏡、核能、光電效應的應用。</td>
</tr>
</tbody>
</table>
化學

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
</table>
| 物質的組成與特性（A） | 物質組成與元素的週期性（Aa） | CAA-Va-1 原子的結構是原子核在中間，電子會存在於不同能階。
CAA-Va-2 波耳氫原子模型解釋氫原子光譜與芮得柏方程式。
CAA-Va-3 多電子原子的電子與其軌域，可以四種量子數加以說明。
CAA-Va-4 原子的電子組態的填入規則，包括包立不相容原理、洪德定則及遞建原理。
CAA-Va-5 元素的電子組態和性質息息相關，且可在週期表呈現出其週期性變化。 |
| 物質的形態、性質及分類（Ab） | 物質的組成與元素的週期性（Aa） | CAB-Va-1 化學鍵的特性會影響物質的性質。
CAB-Va-2 不同的官能基會影響有機化合物的性質。
CAB-Va-3 液晶的形態與性質。
CAB-Va-4 週期表中的分類。 |
| 能量的形式、轉換及流動（B） | 能量的形式與轉換（Ba） | CBA-Va-1 化學能與其他形式能量之間的轉換。
CBA-Va-2 影響反應熱的因素包括：溫度、壓力、反應物的量及狀態。
CBA-Va-3 反應熱的加成性遵守赫斯定律。
CBA-Va-4 常見的反應熱種類包括莫耳燃燒熱與莫耳生成熱。 |
| 物質的結構與功能（C） | 物質的分離與鑑定（Ca） | CCa-Va-1 常見物質的鑑定方法與原理。
CCa-Va-2 同分異構物的結構與功能。
CCa-Va-3 蒸氣壓的表示法。
CCa-Va-4 依數性質：非揮發性物質溶於水，使得蒸氣壓下降、沸點上升、凝固點下降及滲透壓增加。 |
| 物質系統（E） | 氣體（Ec） | CEC-Va-1 理想氣體粒子模型。
CEC-Va-2 氣體的壓力。
CEC-Va-3 理想氣體三大定律與理想氣體方程式。
CEC-Va-4 道耳頓分壓定律。
CEC-Va-5 理想氣體與真實氣體。 |
| 物質的反應、平衡及製造（J） | 物質反應規律（Ja） | CJa-Va-1 化學反應牽涉原子間的重組，並遵守質量守恆、原子不滅，以及電荷守恆及能量守恆。
CJa-Va-2 化學反應與化學程序的產率。 |
| 水溶液中的變化（Jb） | | CJb-Va-1 莫耳分率的表示法。
CJb-Va-2 溫度與壓力對氣體溶解度的影響。
CJb-Va-3 離子之沉澱、分離及確認。
CJb-Va-4 拉午耳定律與理想溶液。
CJb-Va-5 依數性質：非揮發性物質溶於水，使得蒸氣壓下降、沸點上升、凝固點下降及滲透壓增加。 |
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>氧化與還原反應（Jc）</td>
<td>CJc-Va-1</td>
<td>常見氧化劑與還原劑的半反應式。</td>
</tr>
<tr>
<td></td>
<td>CJc-Va-2</td>
<td>氧化數的規則與應用。</td>
</tr>
<tr>
<td></td>
<td>CJc-Va-3</td>
<td>氧化還原反應與均衡。</td>
</tr>
<tr>
<td></td>
<td>CJc-Va-4</td>
<td>氧化還原滴定原理與定量分析。</td>
</tr>
<tr>
<td></td>
<td>CJc-Va-5</td>
<td>電化電池的原理。</td>
</tr>
<tr>
<td></td>
<td>CJc-Va-6</td>
<td>標準還原電位與電化電池的電動勢。</td>
</tr>
<tr>
<td></td>
<td>CJc-Va-7</td>
<td>常見電池的原理與設計。</td>
</tr>
<tr>
<td></td>
<td>CJc-Va-8</td>
<td>電解與電鍍的原理。</td>
</tr>
<tr>
<td>酸鹼反應（Jd）</td>
<td>CJd-Va-1</td>
<td>酸與鹼的命名。</td>
</tr>
<tr>
<td></td>
<td>CJd-Va-2</td>
<td>布洛酸鹼學說。</td>
</tr>
<tr>
<td></td>
<td>CJd-Va-3</td>
<td>定溫下，[H⁺]和[OH⁻]的乘積為一定值，稱為離子積常數。</td>
</tr>
<tr>
<td></td>
<td>CJd-Va-4</td>
<td>弱酸或弱鹼的游離常數：酸鹼的 Ka、Kb。</td>
</tr>
<tr>
<td></td>
<td>CJd-Va-5</td>
<td>酸鹼指示劑的原理與應用。</td>
</tr>
<tr>
<td></td>
<td>CJd-Va-6</td>
<td>酸鹼滴定原理與定量分析。</td>
</tr>
<tr>
<td></td>
<td>CJd-Va-7</td>
<td>鹽的種類與性質。</td>
</tr>
<tr>
<td></td>
<td>CJd-Va-8</td>
<td>同離子效應與緩衝溶液的定義、製備及功用。</td>
</tr>
<tr>
<td>化學反應速率與平衡（Je）</td>
<td>CJe-Va-1</td>
<td>反應速率定律式。</td>
</tr>
<tr>
<td></td>
<td>CJe-Va-2</td>
<td>反應能量圖。</td>
</tr>
<tr>
<td></td>
<td>CJe-Va-3</td>
<td>碰撞學說解釋影響反應速率的因素。</td>
</tr>
<tr>
<td></td>
<td>CJe-Va-4</td>
<td>催化劑與酵素的性質及其應用。</td>
</tr>
<tr>
<td></td>
<td>CJe-Va-5</td>
<td>定溫時，水的游離速率會等於結合速率，稱為游離平衡。</td>
</tr>
<tr>
<td></td>
<td>CJe-Va-6</td>
<td>勒沙特列原理。</td>
</tr>
<tr>
<td></td>
<td>CJe-Va-7</td>
<td>平衡常數的定義與計算。</td>
</tr>
<tr>
<td></td>
<td>CJe-Va-8</td>
<td>溶解度平衡與溶度積的關係。</td>
</tr>
<tr>
<td>有機化合物的性質、製備及反應（Jf）</td>
<td>CJf-Va-1</td>
<td>有機化合物組成。</td>
</tr>
<tr>
<td></td>
<td>CJf-Va-2</td>
<td>有機化合物的命名、結構及官能基的檢驗與其用途—烴、鹵化烴、醇、酚、醚、酮、醛、有機酸、酯、胺及醯胺。</td>
</tr>
<tr>
<td></td>
<td>CJf-Va-3</td>
<td>常見有機化合物的重要反應。</td>
</tr>
<tr>
<td></td>
<td>CJf-Va-4</td>
<td>常見聚合物的一般性質與分類。</td>
</tr>
<tr>
<td></td>
<td>CJf-Va-5</td>
<td>常見聚合物的結構及製備。</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>CMa-Va-1</td>
<td>從化學的主要發展方向和產業成果，建立綠色化學與永續發展的概念，並積極參與科學知識的傳播，促進化學知識進入個人和社會生活。</td>
</tr>
<tr>
<td></td>
<td>CMa-Va-2</td>
<td>化學化工技術與社會、法律及倫理相關議題。</td>
</tr>
<tr>
<td>科學發展的歷史（Mb）</td>
<td>CMb-Va-1</td>
<td>化學發展史上的重要事件、相關理論發展及科學家的研究事蹟。</td>
</tr>
<tr>
<td></td>
<td>CMb-Va-2</td>
<td>化學微觀概念的形成與發展。</td>
</tr>
<tr>
<td></td>
<td>CMb-Va-3</td>
<td>科學模型的特性與演變。</td>
</tr>
<tr>
<td>科學在生活中</td>
<td>CMc-Va-1</td>
<td>氫氣的性質、製取及用途。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第五學習階段學習內容（加深加廣選修）</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>的應用（Mc）</td>
<td>CMc-Va-2 常見金屬及重要的化合物之製備、性質及用途。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMc-Va-3 常見合金之性質與用途。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMc-Va-4 常見非金屬與重要的化合物之製備、性質及用途。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMc-Va-5 生活中常見之合成纖維、合成塑膠及合成橡膠之性質與應用。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMc-Va-6 先進材料。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMc-Va-7 奈米尺度。</td>
</tr>
<tr>
<td></td>
<td>環境汙染與防治（Me）</td>
<td>CMe-Va-1 水汙染之檢測方法。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMe-Va-2 大氣汙染物之檢測方法。</td>
</tr>
<tr>
<td>資源與永續發展(N)</td>
<td>永續發展與資源的利用（Na）</td>
<td>CNa-Va-1 永續發展理念之應用。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNa-Va-2 資源保育的有效方法。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNa-Va-3 廢棄物的創新利用與再製作。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNa-Va-4 氣循環。</td>
</tr>
<tr>
<td></td>
<td>能源的開發與利用（Nc）</td>
<td>CNc-Va-1 新興能源與替代能源在臺灣發展之可能性與限制。</td>
</tr>
</tbody>
</table>

4. 地球科學

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質系統（E）</td>
<td>宇宙與天體（Ed）</td>
<td>EEd-Va-1 恆星光譜可用以了解恆星的大氣組成與物理性質。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Va-2 地面天文觀測的主要工具是光學望遠鏡與電波望遠鏡。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Va-3 地面天文觀測會受到諸多地表環境條件的限制。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Va-4 地球上看到的星空係不同時空的疊合，距離愈遠即愈古老。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Va-5 星色-星等的關係圖有助於認識恆星的類型與演化。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Va-6 測量天體的距離有助於了解宇宙的大尺度結構。</td>
</tr>
<tr>
<td>地球環境（F）</td>
<td>組成地球的物質（Fa）</td>
<td>EFa-Va-1 火成岩形成時岩漿的成分與冷卻速度會影響外觀。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-2 不同沉積環境會影響沉積岩組成與顆粒的大小。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-3 變質岩的形成受原來母岩與變質程度的影響，具有不同的外觀形態。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-4 礦物具有一定的化學成分與物理性質。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-5 礦物種類繁多，但一般岩石中常見的造岩礦物種類有限。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-6 主要建材多來自於岩石與其產物。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-7 經由地殼鑽探、不同地球物理探勘方法，可以幫助了解固體地球的結構與成分。</td>
</tr>
<tr>
<td>地球與太空（Fb）</td>
<td></td>
<td>EFb-Va-1 歷史地心說、日心說等學說的演進，天文學家現今已了解地球在太空中的運行規</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>第五學習階段學習內容（加深加廣選修）</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>地球的歷史(II)</td>
<td>地球的起源與演變(IIa)</td>
<td>EFb-Va-2 历法主要是根據天體運動的規律而制定。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFb-Va-1 人類對地球起源與演變的想法隨文明發展而改變，近代逐漸釐清出大致的輪廓。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFb-Va-2 高溫熔融態的原始地球，經過分化分層，形成具層狀結構之固體地球，逐漸冷卻，在釋氣過程中，大氣與海洋隨之演化。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFb-Va-3 人類透過各種科學方法，了解地球的大小與形狀。</td>
</tr>
<tr>
<td>地層與化石(IIIb)</td>
<td></td>
<td>EHa-Va-1 地層中的標準化石，指相化石與地質構造，可輔助了解地層的沉積環境與年代。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EHa-Va-2 研究地球歷史的不同方法有不同限制與精確度，地球歷史需要綜合多方面的證據才能提出適當的推論。</td>
</tr>
<tr>
<td>變動的地球(I)</td>
<td>地表與地殻的變動(Ia)</td>
<td>EIa-Va-1 由浮力平衡的原理可推知，地殻會有垂直方向的升降調整，且有觀測證據支持。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIa-Va-2 斷層、褶皺、節理為岩層歷經地殼變動受力後的表徵。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIa-Va-3 透過野外觀察記錄及分析，建立地質圖等資料，可以幫助了解當地岩層的分布與構造。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIa-Va-4 透過野外地質觀測及儀器偵測到的地球物理資料，可以幫助建立臺灣的地體構造模型。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIa-Va-5 透過儀器對地殻變動的監測，可幫助了解板塊相互運動的狀態。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIa-Va-6 遠測工具對於地表與地殻的變動提供了更全面的觀測。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EIa-Va-7 各種不同工具可幫助了解海底地形與陸地地形在形態及規模的不同。</td>
</tr>
<tr>
<td>天氣與氣候變化(IIIb)</td>
<td></td>
<td>Elb-Va-1 水在水圈及大氣圈之中的三態變化與能量的轉換傳遞，對天氣與氣候變化有很大的影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Va-2 大氣垂直溫度的差異會造成大氣的不穩定而引發垂直運動。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Va-3 大氣垂直運動的形態決定了雲與降水的形態。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Va-4 各種尺度的海陸差異與地形變化對天氣都有影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Va-5 氣象預報與生活習習相關，有些行業非常需要氣象預報提供的訊息。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Va-6 透過地面觀測與高空觀測、衛星及雷達遙測可以獲得氣象資料。</td>
</tr>
</tbody>
</table>
| | | Elb-Va-7 透過觀測的氣溫、降水量、風向、風速、
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>第五學習階段學習內容（加深加廣選修）</th>
</tr>
</thead>
<tbody>
<tr>
<td>海水的運動（Ic）</td>
<td>E1c-Va-1</td>
<td>相對濕度等和衛星雲圖等紀錄，可以分析天氣系統的變化過程，並提出適當的解釋。</td>
</tr>
<tr>
<td></td>
<td>E1c-Va-2</td>
<td>溫鹽環流是海洋下層水的流動，由海水的密度差異所驅動，具有傳送能量與調節氣候的重要功能。</td>
</tr>
<tr>
<td></td>
<td>E1c-Va-3</td>
<td>臺灣附近的海流會影響臺灣四季的氣候。</td>
</tr>
<tr>
<td></td>
<td>E1c-Va-4</td>
<td>號升流能將下層富營養鹽的海水往表層輸送，可以提高該海域的基礎生產力。</td>
</tr>
<tr>
<td></td>
<td>E1c-Va-5</td>
<td>透過海洋的探測與遙測，有助於了解海水運動與水文性質的變化。</td>
</tr>
<tr>
<td>畫夜與季節（Id）</td>
<td>E1d-Va-1</td>
<td>不同緯度的畫夜長短會隨季節變化。</td>
</tr>
<tr>
<td></td>
<td>E1d-Va-2</td>
<td>二十四節氣依太陽在天球上的位置而訂定。</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>天然災害與防治（Md）</td>
<td>EMd-Va-1</td>
</tr>
<tr>
<td></td>
<td>EMd-Va-2</td>
<td>水土保持具有防災與減災的功能。</td>
</tr>
<tr>
<td></td>
<td>EMd-Va-3</td>
<td>可利用野外測勘、遙測及鑽井等技術確認地質敏感區。</td>
</tr>
<tr>
<td>資源與永續發展（N）</td>
<td>永續發展與資源的利用（Na）</td>
<td>ENa-Va-1</td>
</tr>
<tr>
<td></td>
<td>ENa-Va-2</td>
<td>水資源的永續經營與利用，除節約用水之外，維護自然生態環境，作好水土保持，才是更積極的做法。</td>
</tr>
<tr>
<td></td>
<td>ENa-Va-3</td>
<td>化石燃料是目前用途最廣且最重要的能源，但地球儲藏量有限，且有破壞全球碳循環平衡的問題。</td>
</tr>
<tr>
<td></td>
<td>ENa-Va-4</td>
<td>新興能源的開發，有機會解決當代能源問題。</td>
</tr>
<tr>
<td></td>
<td>ENa-Va-5</td>
<td>面對永續發展的問題，可以用社會、經濟及環境等三個面向來共同討論與均衡發展。</td>
</tr>
<tr>
<td>氣候變遷之影響與調適（Nb）</td>
<td>ENb-Va-1</td>
<td>各種不同的氣候變遷模式的研究，說明單純自然因素和加入人为因素之後的推估。</td>
</tr>
<tr>
<td></td>
<td>ENb-Va-2</td>
<td>氣候變遷的推估與未來衝擊充滿了不確定性。</td>
</tr>
<tr>
<td></td>
<td>ENb-Va-3</td>
<td>全球各地所發生的氣候變遷在程度與類型上是不一樣的。</td>
</tr>
<tr>
<td></td>
<td>ENb-Va-4</td>
<td>人類對地球環境變遷的因應與調適有可能避免災害發生。</td>
</tr>
</tbody>
</table>
陸、實施要點

一、課程發展

（一）學校課程發展應配合《總綱》中自發、互動、共好的課程理念，培養學生自主學習導向的學習模式。

（二）自然科學領域之學校課程發展應重視科目間的統整，配合三至十二年級領域課程綱要之安排，達到各教育階段間之縱向連貫（參考表一各學習階段學生的自然科學學習特性、表二學習表現架構表及表三學習內容架構表）。

（三）高級中等教育階段涉及自然科學領域之跨領域彈性學習時間應由具專業素養（例如：科學背景、專業認證/研習等）之教師研訂，並由學校課程發展委員會審查通過。透過運用學校、社區或校外自然環境，提供學生各種可供學習的資源。

（四）在普通型高級中等學校「自然科學探究與實作課程內容」中，學校應參考相關的教學示例，擬定課程計畫，架構整個學年、階段性的短期或主題之教學活動。為配合課程發展與教學實施與評量，學校應安排足夠師資，視師生比例需求增加自然科學領域專長教師授課，依課程需要得由不同科目教師擔任。悉依「高級中等學校課程規劃及實施要點」等相關規定辦理。

（五）自然科學領域各教育階段課程發展，在國民小學教育階段應選擇合適之議題、大概念或跨科概念做統整發展課程。國民中學教育階段課程規劃，除實施領域教學外，經學校課程發展委員會通過後，亦得實施分科教學，並鼓勵跨科教學，跨科內容約佔該科教學總時數六分之一，並宜以實驗、實作或探究方式進行跨科主題之教學。普通型高級中等學校教育階段則以分科為主。

二、教材編選

（一）教材編選應依據領域課程綱要之學習重點，安排合適的教學內容。

（二）編輯自然科學領域教科用書時，須列出三至十二年級學習重點發展進程之課程計畫，依課程計畫協助教師了解銜接各年級的核心概念、探究能力及科學的態度與本質的發展。

（三）教材編選時，應注意各種媒材之性別及族群意涵的圖像、語言與文字，並使用性別與族群平等的語言與文字進行書寫，避免傳遞特定的刻板印象。鼓勵原住民族重點學校之教材選編，適度與當地原住民族文化結合，進行文化回應教學。

（四）普通型高級中等學校「自然科學探究與實作課程內容」之實施有三項指導原則：1. 課程設計與發展；2. 以問題（議題）導向引導探究；3. 教材應有確切的參考資料。其教材編選應可協同不同科目教師共同安排教學內容，指導學生以主題、議題、跨科概念等進行探究活動，進而培養學生探究能力。

（五）教材編選宜融入科學發現過程的史實資料、科學家簡介，以增加學生學習興趣，
減少知識性理解的難度；教材之選編應兼顧本土、少數族群與不同性別科學家之
史實資料，使學生得以藉助科學發現過程之了解，培養科學的態度和探究能力，
促進科學本質的認識。

（六）教材編選時應依十二年國民基本教育自然科學領域課程綱要精神與內容，鼓勵學
生動手實作體驗，合適安排各年段的實作課程，以達到規定的時數，其中國民中
學教育階段應有三分之一節數為實作體驗課。為提高學生學習興趣，增進學習效
果，得適時設計示範實驗、戶外教學等活動。

（七）實作教材的設計應強調操作的學習，除了強化實驗、操作與探索體驗過程中獲得
過程技能外，並能培養其歸納推理，發現、解決問題，以及自我學習的能力。

（八）實驗教材應包含實驗活動、藥品特性、處理方法和器材安全等的詳盡說明。

（九）教材中的專有名詞和人名翻譯，應以教育部公布之自然科學領域/科目名詞為準，
遇有未規定者，則參照目前國內科學刊物及習慣用語，妥為譯註，惟各冊必須一
致，且與其他相關科目相配合。

三、教學實施

（一）教學設計應依據學生特性與身心發展狀況，依循自然科學領域核心素養具體內涵，
審酌教育專業，提供資源、機會及環境，引導學生成為自發主動的學習者。

（二）教師使用教材及從事教育活動時，應具備性別平等意識，破除性別刻板印象，避
免性別偏見及性別歧視，並應鼓勵學生修習非傳統性別之學科領域。

（三）教學實施應以培養學生擁有問題解決能力為目標，規劃學習活動應以解決問題策
略為中心，並依循確認問題、蒐集有關資訊、擬訂解決方案、選定及執行解決方
案，以及進行方案評鑑與改進等程序實施教學。

（四）教學實施應以培養探究能力、分工合作的學習、獲得思考智能、習得操作技能、
達成課程目標為原則。因此，教學形式應不拘於一種，視教學目標及實際情況而
定，可採取講述、實驗、實作、專題探究、戶外參觀或科學觀察、植栽及飼養之
長期實驗等多元方式。

（五）教學設計無論為學生個人學習或團體學習，應於教學進行中培養學生欣賞、包容
個別差異並尊重自己與他人權利的價值觀。

（六）教師進行教學設計時，對於理論或原理原則的演繹推理，宜多舉實例，以引起學
生仿作動機，進而自行推理分析，習得演繹法的實驗程序及方法。

（七）教師進行教學設計時，宜以學生日常生活體驗，以既有知識或經驗為基礎，引導
學生發現問題。實際教學時，可彈性調整教科用書單元與活動順序，以適應各地
區環境與特性。

（八）教學設計需要以實驗歸納證據者，教師宜讓學生親手操作，以熟練實驗技巧，提
供學生自我發揮之創造空間。教師可從旁協助善加引導，提供學生動手做實驗、感受發現的喜悅，並讓學生藉由分析實驗統計數據的結果，習得歸納法之實驗程序及方法。

（九）教師宜就教材特性，使用教學媒體、實驗活動、田野踏察或戶外教學等，除知識傳授外，更加注重科學方法運用、科學態度的培養及科學本質的認識。

（十）教師在教學前宜參考課程計畫、教學計畫，訂定學習評量計畫，評估學生學習成果以達成教學目標；且應依據學生學習成效，修訂教學計畫，藉以提升教學效能與品質，達成教師自我之專業成長。

（十一）自然科學探究與實作課程內容之教學主題，由各校教師依據自然科學探究與實作學習內容、學校特性自行設計。為強化跨科目之間的整合，課程可由領域內不同學科教師協同教學。

（十二）教學時，要因應學生的多元文化背景與特殊需求，含辨色障礙、感官障礙等，提供支持性和差異化的教學，並且提供適性的輔導措施。對於有特殊需求的學生，教育主管機關應協助學校提供合適的教學資源。

四、教學資源

（一）學校應依教育部頒布之〈各級學校設備標準〉，設置自然科學領域實驗室、藥品儲藏室、器材準備室（含備妥急救沖洗及防火器材），並應依據各教育階段學校班級規模編配實驗室專長管理人員，並由各科專任教師減授課鐘點後協助，相關管理人員、協助教師等編配，由各該教育主管機關訂定。實驗活動所需設備、器具及耗材應獲得充分之供應，因此，中央及地方主管教育行政機關應妥為規劃並編列預算，以供應各校所需之實驗器材、並處理各校因實驗教學而產生之有毒廢棄物。

（二）自然科學領域之實驗室與實驗活動場所，應注意通風、安全措施及環境汙染防制；並訂定實驗室設備正確使用與操作、實驗耗材補充、及實驗設備維護等之規範。

（三）學校可善用社區或大眾運輸工具可達地區之「生態池」、「溼地」、「生態環境園區」等戶外生態環境，未具前述條件之學校，則在校內環境許可範圍內，可設置「小型生態池」、「溼地」或「生態環境園區」，以利自然科學領域所需之教學活動。

（四）學校相關人員於學期開始前，根據設備標準、學校課程計畫、教師教學計畫等，準備所需之實驗教室與戶外探索調查所需之器材/器具。

（五）學校應依自然科學領域課程綱要內容，妥適充實教學必需之相關設備、器材、藥品及標本，並需購置教學所需之模型、掛圖、書籍、報章雜誌及光碟等教學媒體，亦應提供相關設備和材料，鼓勵教師自製教學媒體，並善用數位教學平臺資源。

五、學習評量

（一）實施學習評量應依據學生身心發展狀況，並配合核心素養具體內涵，遵循測驗評量之教育專業。從多元評量過程中，讓學生能獲得探究的樂趣與養成求真求實的工作精神，培養出注重科學的態度，以促進學生成為自發主動的學習者。

（二）教師教學時應先以適當方法評估學生之「先備知識」，並以學生之「先備知識」及生活經驗為基礎，應用適當教學策略幫助學生進行有意義及意義內化之學習。

（三）為了解學生學習狀況和成就，教師應適時進行「形成性評量」和「總結性評量」，評估學生學習成就與教學成效，並加以補救及調整，俾達成預期的教學目標。即使進行紙筆評量也應兼顧學習內容與學習表現。

（四）教師應進行自我評量及學生學習成就評量，逐步修訂教學計畫，使之更趨完善，教學得以相長。

（五）學習評量應秉持真實性評量的理念，採用多元方式實施，除由教師進行考評之外，亦得輔以學生自我評量等方式，以確認學生是否達成學習目標，俾做為改進教學、提升教學成效之參考。

（六）評量應依據教材編選設定之規準、課程目標及學習目標，提供相關圖表資料供學生參考，以培養學生分析與推理之能力，達到評量的真正目的，不應一昧要求學生背誦記憶。

（七）評量時應依據評量目的與使用時機，選擇不同評量方式，兼顧總結性與歷程性之評量目的，其可運用之型式，例如：專題報告、成品展示、紙筆測驗、口頭報告、實驗設計，以及學習歷程檔案等多種方式。另外，課堂實作與討論等活動之觀察，可即時掌握學生的學習，前述評量方式宜交互運用，藉此了解學生的學習情況並促進學習。

（八）為提升學生對於科學文本之閱讀、口語與文字表達能力，建議以科學報告之撰寫及口頭表達，做為高層次能力之總結性評量方法，每學年至少實施1次。

（九）實作評量可應用於學習活動中，特別是自然科學探究與實作課程內容，主要目的在於了解學生學習實況，以做為改進教學、促進學習的參考。評量應具有引發學生反省思考之功能，導引學生能珍惜自我成長、持平的面對自己的學習成就、察覺自己學習方式之優缺點。評量應具有敦促與鼓勵的效果，使學生相信在經過個人努力或更加專注後，個人能獲得更好的學習成效。
附錄一：自然科學領域學習重點與核心素養呼應表參考示例

一、國民小學教育階段

<table>
<thead>
<tr>
<th>自然科學領域學習重點</th>
<th>學習內容</th>
<th>自然科學領域核心素養</th>
</tr>
</thead>
<tbody>
<tr>
<td>ti-Ⅱ-1</td>
<td>能在指導下觀察日常生活現象的規律性，並運用想像力與好奇心，了解及描述自然環境的現象。</td>
<td>INe-Ⅱ-4 常見食物的酸鹼性有時可利用氣味、觸覺、味覺簡單區分，花卉、菜葉會因接觸到酸鹼而改變顏色。</td>
</tr>
<tr>
<td>ah-Ⅱ-1</td>
<td>透過各種感官了解生活週遭事物的屬性。</td>
<td>Inc-Ⅱ-6 水有三態變化及毛細現象。</td>
</tr>
<tr>
<td>ai-Ⅲ-1</td>
<td>透過科學探索了解現象發生的原因或機制，滿足好奇心。</td>
<td>Inc-Ⅱ-10 天空中天體有東升西落的現象，月亮有盈虧的變化，星星則是有些亮有些暗。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inb-Ⅲ-6 動物的形態特徵與行為相關，動物身體的構造不同，有不同的運動方式。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inb-Ⅲ-7 植物各部位的構造和所具有的功能有關，有些植物產生特化的構造以適應環境。</td>
</tr>
<tr>
<td>po-Ⅱ-1</td>
<td>能從日常經驗、學習活動、自然環境，進行觀察，進而能察覺問題。</td>
<td>INe-Ⅱ-9 電池或燈泡可以有串聯和並聯的接法，不同接法會產生不同的效果。</td>
</tr>
<tr>
<td>an-Ⅱ-3</td>
<td>發覺創造和想像是科學的重要元素。</td>
<td>Inc-Ⅲ-5 常用酸鹼物質的特性，水溶液的酸鹼性質及其生活上的運用。</td>
</tr>
<tr>
<td>tr-Ⅲ-1</td>
<td>能將自己及他人所觀察、記錄的自然現象與習得的知識相互連結，察覺彼此間的關係，並提出自己的想法及知道與他人的差異。</td>
<td>Incd-Ⅲ-9 流水、風和波浪對砂石和土壤產生侵蝕、風化、搬運及堆積等作用，河流是改變地表最重要的力量。</td>
</tr>
<tr>
<td>學習表現</td>
<td>學習內容</td>
<td>自然科學領域核心素養</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>pe-Ⅱ-1</td>
<td>能了解一個因素改變可能造成的影響，進行預測活動的初步結果。在教師或教師的指導或說明下，能了解探究的計畫。</td>
<td>自-E-A3 使用工具或自訂參考標準可量度與比較。</td>
</tr>
<tr>
<td>pe-Ⅲ-1</td>
<td>能了解自變項、因變項與預測改變時可能的影響和進行適當測量的意義。在教師或教師的指導或說明下，能了解探究的計畫，並進而能根據問題的特性、資源的有無等因素，規劃簡單的探究活動。</td>
<td>自-E-B1 能分析比較、製作圖表、運用簡單數學等方法，整理已有的自然科學資訊或數據，並利用較簡單形式的口語、文字、影像、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或結果。</td>
</tr>
<tr>
<td>pe-Ⅲ-2</td>
<td>能正確安全操作適合學習階段的物品、器材儀器、科技設備及資源。能進行客觀的質性觀察或數量測試詳實記錄。</td>
<td>自-E-B1 能分析比較、製作圖表、運用簡單數學等方法，整理已有的自然科學資訊或數據，並利用較簡單形式的口語、文字、影像、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或結果。</td>
</tr>
<tr>
<td>ah-Ⅱ-2</td>
<td>透過有系統的分類與表述方式，與他人溝通自己的想法與發現。</td>
<td>自-E-B1 能分析比較、製作圖表、運用簡單數學等方法，整理已有的自然科學資訊或數據，並利用較簡單形式的口語、文字、影像、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或結果。</td>
</tr>
<tr>
<td>tc-Ⅲ-1</td>
<td>能就所蒐集的數據或資料，進行簡單的記錄與分類，並依據習得的知識，思考資料的正確性及辨別他人資訊與事實的差異。</td>
<td>自-E-B1 能分析比較、製作圖表、運用簡單數學等方法，整理已有的自然科學資訊或數據，並利用較簡單形式的口語、文字、影像、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或結果。</td>
</tr>
<tr>
<td>pa-Ⅲ-1</td>
<td>能分析比較、製作圖表、運用簡單數學等方法，整理已有的資訊或數據。</td>
<td>自-E-B1 能分析比較、製作圖表、運用簡單數學等方法，整理已有的自然科學資訊或數據，並利用較簡單形式的口語、文字、影像、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或結果。</td>
</tr>
<tr>
<td>pa-Ⅲ-2</td>
<td>能從(所得的)資訊或數據，形成解釋、發現新知後，獲知因果關係、解決問題或是發現新的問題。</td>
<td>自-E-B1 能分析比較、製作圖表、運用簡單數學等方法，整理已有的自然科學資訊或數據，並利用較簡單形式的口語、文字、影像、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或結果。</td>
</tr>
<tr>
<td>pc-Ⅲ-2</td>
<td>能利用簡單形式的口語、文字、影像、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或結果。</td>
<td>自-E-B1 能分析比較、製作圖表、運用簡單數學等方法，整理已有的自然科學資訊或數據，並利用較簡單形式的口語、文字、影像、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現或結果。</td>
</tr>
<tr>
<td>學習表現</td>
<td>學習內容</td>
<td>自然科學領域核心素養</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>po-Ⅲ-1</td>
<td>能從學習活動、日常經驗及科技運用、自然環境、書刊及網路媒體等察觉問題。</td>
<td>INf-Ⅲ-2 科技在生活中的應用與對環境與人體的影響。</td>
</tr>
<tr>
<td>po-Ⅲ-2</td>
<td>能初步辨別適合科學探究的問題，並能依據觀察、蒐集資料、閱讀、思考、討論等，提出適宜探究之問題。</td>
<td>INd-Ⅲ-7 天氣圖上用高、低氣壓、鋒面、颱風等符號來表示天氣現象，並認識其天氣變化。</td>
</tr>
<tr>
<td>ai-Ⅱ-1</td>
<td>保持對自然現象的好奇心，透過不斷的探尋和提問，常會有新發現。</td>
<td>自-E-B3 能了解科技及媒體的運用方式，並從學習活動、日常經驗及科技運用、自然環境、書刊及網路媒體等，察觉問題或獲得有助於探究的資訊。</td>
</tr>
<tr>
<td>ai-Ⅱ-2</td>
<td>透過探討自然與物質世界的規律性，感受發現的樂趣。</td>
<td></td>
</tr>
<tr>
<td>ai-Ⅱ-3</td>
<td>透過動手實作，享受以成品來表現自己構想的樂趣。</td>
<td></td>
</tr>
<tr>
<td>ah-Ⅲ-2</td>
<td>透過科學探究活動解決一部分生活週遭的問題。</td>
<td>INg-Ⅲ-2 人類活動與其他生物的活動會相互影響，不當引進外來物種可能造成經濟損失和生態破壞。</td>
</tr>
<tr>
<td>pc-Ⅱ-1</td>
<td>能專注聆聽同學報告，提出疑問或意見。並能對探究方法、過程或結果，進行檢討。</td>
<td>INd-Ⅱ-2 物質或自然現象的改變情形，可以運用測量的工具和方法得知。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INd-Ⅱ-7 天氣預報常用雨量、溫度、風向、風速等資料來表達天氣狀態，這些</td>
</tr>
<tr>
<td></td>
<td></td>
<td>自-E-C1 培養愛護自然、珍愛生命、惜取資源的關懷心與行動力。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>自-E-C2 透過探索科學的合作學習，培養與同儕溝通表達、團隊合作及和諧相</td>
</tr>
<tr>
<td>學習表現</td>
<td>學習內容</td>
<td>自然科學領域核心素養</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>po-Ⅱ-1</td>
<td>資料可以使用適當儀器測得。</td>
<td>自-E-C3 透過環境相關議題的學習，能了解全球自然環境的現況與特性及其背後之文化差異。</td>
</tr>
<tr>
<td>an-Ⅱ-2</td>
<td>自然環境中有許多資源。人類生存與生活需依賴自然環境中的各種資源，但自然資源都是有限的，需要珍惜使用。</td>
<td></td>
</tr>
<tr>
<td>tm-Ⅲ-1</td>
<td>生物的分布和習性，會受環境因素的影響；環境改變也會影響生存於其中的生物種類。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>人類的活動會造成氣候變遷，加劇對生態與環境的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

二、國民中學教育階段

<table>
<thead>
<tr>
<th>學習表現</th>
<th>學習內容</th>
<th>自然科學領域核心素養</th>
</tr>
</thead>
<tbody>
<tr>
<td>ti-Ⅳ-1</td>
<td>能將所習得的知識，連結到自己觀察到的自然現象及實驗數據。</td>
<td>自-J-A1 能應用科學知識、方法與態度於日常生活當中。</td>
</tr>
<tr>
<td>tr-Ⅳ-1</td>
<td>能將所習得的知識正確的連結到所觀察到的自然現象及實驗數據，並推論出其中的關聯，進而運用習得的知識來解釋自己論點的正確性。</td>
<td></td>
</tr>
<tr>
<td>ai-Ⅳ-3</td>
<td>透過所學到的科學知識和科學探索的各種方法，解釋自然現象發生的原因，建立科學學習的自信心。</td>
<td></td>
</tr>
<tr>
<td>tc-Ⅳ-1</td>
<td>能根據已知的自然科學知識與概念，對自己蒐集與分類的科學數據，抱持合理的懷疑態度，</td>
<td>自-J-A2 能將所習得的科學知識，連結到自己觀察</td>
</tr>
</tbody>
</table>
自然科學領域學習重點

<table>
<thead>
<tr>
<th>學習表現</th>
<th>學習內容</th>
<th>自然科學領域核心素養</th>
</tr>
</thead>
<tbody>
<tr>
<td>po-IV-2</td>
<td>並對他人的資訊或報告，提出自己的看法或解釋。</td>
<td>並對他人的資訊或報告，提出自己的看法或解釋。</td>
</tr>
<tr>
<td>po-IV-1</td>
<td>能辨別適合科學探究或適合以科學方式尋求解決的問題（或假說），並能依據觀察、蒐集資料、閱讀、思考、討論等，提出適宜探究之問題。</td>
<td>能辨別適合科學探究或適合以科學方式尋求解決的問題（或假說），並能依據觀察、蒐集資料、閱讀、思考、討論等，提出適宜探究之問題。</td>
</tr>
<tr>
<td>pe-IV-1</td>
<td>能從學習活動、日常經驗以及科技運用、自然環境、書籍及網路媒體中，進行各種有計劃的觀察，進而能察覺問題。</td>
<td>能從學習活動、日常經驗以及科技運用、自然環境、書籍及網路媒體中，進行各種有計劃的觀察，進而能察覺問題。</td>
</tr>
<tr>
<td>pe-IV-2</td>
<td>能辨別適合科學探究或適合以科學方式尋求解決的問題（或假說），並能依據觀察、蒐集資料、閱讀、思考、討論等，提出適宜探究之問題。</td>
<td>能辨別適合科學探究或適合以科學方式尋求解決的問題（或假說），並能依據觀察、蒐集資料、閱讀、思考、討論等，提出適宜探究之問題。</td>
</tr>
<tr>
<td>pa-IV-1</td>
<td>能分析歸納、製作圖表、使用資及數學等方法，整理資訊或數據。</td>
<td>能分析歸納、製作圖表、使用資及數學等方法，整理資訊或數據。</td>
</tr>
<tr>
<td>pa-IV-2</td>
<td>能運用科學原理、思考</td>
<td>隨著生物間、生物與環境間的交互作用，生態系中的結構會隨時間改變，形成演替現象。</td>
</tr>
<tr>
<td>學習表現</td>
<td>學習內容</td>
<td>自然科學領域核心素養</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>pc-IV-2</td>
<td>智能、數學等方法，從（所得的）資訊或數據，形成解釋、發現新知、獲知因果關係、解決問題或發現新的問題。並能將自己的探究結果和同學的結果或其他相關的資訊比較對照，相互檢核，確認結果。能利用口語、影像（例如：攝影、錄影）、文字與圖案、繪圖或實物、科學名詞、數學公式、模型或經教師認可後以報告或新媒體形式表達完整之探究過程、發現與成果、價值、限制和主張等。視需要，並能摘要描述主要過程、發現和可能的運用。</td>
<td>運算等方法，整理自然科學資訊或數據，並利用口語、影像、文字與圖案、繪圖或實物、科學名詞、數學公式、模型等，表達探究之過程、發現與成果、價值和限制等。</td>
</tr>
<tr>
<td>pe-IV-2</td>
<td>能正確安全操作適合學習階段的物品、器材儀器、科技設備及資源。能進行客觀的質性觀察或數值量測並詳實記錄。能理解同學的探究過程和結果（或經簡化過的科學報告），提出合理而且具有根據的疑問或意見。並能對問題、探究方法、證據及發現，彼此間的符應情形，進行檢核並提出可能的改善方案。對於有關科學發現的報導，甚至權威的解釋(例如：報章雜誌的報導或書本上的解釋)，能抱持懷疑的態度，評估其推論的證據是否充分且可信賴。</td>
<td>自-J-B2 能操作適合學習階段的科技設備與資源，並從學習活動、日常經驗及科技運用、自然環境、書刊及網路媒體中，培養相關倫理與分辨資訊之可信程度及進行各種有意識的觀察，以獲得有助於探究和問題解決的資訊。</td>
</tr>
<tr>
<td>pc-IV-1</td>
<td>能正確安全操作適合學習階段的物品、器材儀器、科技設備及資源。能進行客觀的質性觀察或數值量測並詳實記錄。能理解同學的探究過程和結果（或經簡化過的科學報告），提出合理而且具有根據的疑問或意見。並能對問題、探究方法、證據及發現，彼此間的符應情形，進行檢核並提出可能的改善方案。對於有關科學發現的報導，甚至權威的解釋(例如：報章雜誌的報導或書本上的解釋)，能抱持懷疑的態度，評估其推論的證據是否充分且可信賴。</td>
<td>自-J-B2 能操作適合學習階段的科技設備與資源，並從學習活動、日常經驗及科技運用、自然環境、書刊及網路媒體中，培養相關倫理與分辨資訊之可信程度及進行各種有意識的觀察，以獲得有助於探究和問題解決的資訊。</td>
</tr>
<tr>
<td>ah-IV-1</td>
<td>能正確安全操作適合學習階段的物品、器材儀器、科技設備及資源。能進行客觀的質性觀察或數值量測並詳實記錄。能理解同學的探究過程和結果（或經簡化過的科學報告），提出合理而且具有根據的疑問或意見。並能對問題、探究方法、證據及發現，彼此間的符應情形，進行檢核並提出可能的改善方案。對於有關科學發現的報導，甚至權威的解釋(例如：報章雜誌的報導或書本上的解釋)，能抱持懷疑的態度，評估其推論的證據是否充分且可信賴。</td>
<td>自-J-B2 能操作適合學習階段的科技設備與資源，並從學習活動、日常經驗及科技運用、自然環境、書刊及網路媒體中，培養相關倫理與分辨資訊之可信程度及進行各種有意識的觀察，以獲得有助於探究和問題解決的資訊。</td>
</tr>
<tr>
<td>學習表現</td>
<td>學習內容</td>
<td>自然科學領域核心素養</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>tr-IV-1</td>
<td>Gc-IV-2</td>
<td>自-J-B3 透過欣賞山川大地、風雲雨露、河海大洋、日月星辰，體驗自然與生命之美。</td>
</tr>
<tr>
<td></td>
<td>La-IV-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ja-IV-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fa-IV-2</td>
<td></td>
</tr>
<tr>
<td>ah-IV-2</td>
<td>Lb-IV-2</td>
<td>自-J-C1 從日常學習中，主動關心自然環境相關公共議題，尊重生命。</td>
</tr>
<tr>
<td>ah-IV-2</td>
<td>Lb-IV-3</td>
<td></td>
</tr>
<tr>
<td>ah-IV-2</td>
<td>Mb-IV-1</td>
<td></td>
</tr>
<tr>
<td>ah-IV-2</td>
<td>Na-IV-3</td>
<td></td>
</tr>
<tr>
<td>ah-IV-2</td>
<td>Md-IV-2</td>
<td></td>
</tr>
<tr>
<td>tm-IV-1</td>
<td>Na-IV-4</td>
<td>自-J-C2 透過合作學習，發展與同儕溝通、共同參與、共同執行及共同發掘科學相關知識與問題解決的能力。</td>
</tr>
<tr>
<td>tm-IV-1</td>
<td>Fb-IV-3</td>
<td></td>
</tr>
</tbody>
</table>

自然科學領域學習重點

<table>
<thead>
<tr>
<th>學習表現</th>
<th>學習內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>tr-IV-1</td>
<td>能將所習得的知識正確的連結到所觀察到的自然現象及實驗數據，並推論出其中的關聯，進而運用習得的知識來解釋自己論點的正確性。</td>
</tr>
<tr>
<td>ah-IV-2</td>
<td>應用所學到的科學知識與科學探究方法，幫助自己做出最佳的決定。</td>
</tr>
<tr>
<td>tm-IV-1</td>
<td>能從實驗過程、合作討論中理解較複雜的自然界模型，並能評估不同模型的優點和限制，進而應用在後續的科學理解或生活。</td>
</tr>
<tr>
<td>ai-IV-2</td>
<td>透過與同儕的討論，分享科學發現的樂趣。</td>
</tr>
</tbody>
</table>

學習內容

- Gc-IV-2 地球上有形形色色的生物，在生態系中擔任不同的角色，發揮不同的功能，有助於維持生態系的穩定。
- La-IV-1 隨著生物間、生物與環境間的交互作用，生態系中的結構會隨時間改變，形成演替現象。
- Ja-IV-3 化學反應中常伴隨沉澱、氣體、顏色及溫度變化等現象。
- Fa-IV-2 三大類岩石有不同的特徵和成因。
- Lb-IV-2 人類活動會改變環境，也可能影響其他生物的生存。
- Lb-IV-3 人類可採取行動來維持生物的生存環境，使生物能在自然環境中生長、繁殖、交互作用，以維持生態平衡。
- Mb-IV-1 生物技術的發展是為了因應人類需求，運用跨領域技術來改造生物。發展相關技術的歷程中，也應避免對其他生物以及環境造成過度的影響。
- Na-IV-3 環境品質繫於資源的永續利用與維持生態平衡。
- Md-IV-2 颱風主要發生在七至九月，並容易造成生命財產的損失。
自然科學領域學習重點

<table>
<thead>
<tr>
<th>學習表現</th>
<th>學習內容</th>
<th>自然科學領域核心素養</th>
</tr>
</thead>
<tbody>
<tr>
<td>an-IV-1</td>
<td>Ma-IV-2</td>
<td>自-J-C3</td>
</tr>
<tr>
<td></td>
<td>Nc-IV-2</td>
<td>透過環境相關議題的學習，能了解全球自然環境具有差異性與互動性，並能發展出自我文化認同與身為地球公民的價值觀。</td>
</tr>
<tr>
<td>an-IV-2</td>
<td>Na-IV-5</td>
<td>保育工作不是只有科學家能夠處理，所有的公民都有權利及義務，共同研究、監控及維護生物多樣性。</td>
</tr>
<tr>
<td></td>
<td>Ma-IV-4</td>
<td>哪個發電方式與新興的能源科技對社會、經濟、環境及生態的影響。</td>
</tr>
<tr>
<td></td>
<td>Nb-IV-2</td>
<td>氣候變遷產生的衝擊有海平面上升、全球暖化、異常降水等現象。</td>
</tr>
</tbody>
</table>

三、高級中等學校教育階段

<table>
<thead>
<tr>
<th>學習表現</th>
<th>學習內容</th>
<th>自然科學領域核心素養</th>
</tr>
</thead>
<tbody>
<tr>
<td>ai-Vc-3</td>
<td>BGa-Vc-6</td>
<td>自-S-U-A1</td>
</tr>
<tr>
<td>ah-Vc-1</td>
<td>BMb-Vc-4</td>
<td>理解科學的進展與對人類社會的貢獻及限制，將科學事業納為未來生涯發展選擇之一。</td>
</tr>
<tr>
<td></td>
<td>BMc-Vc-1</td>
<td>牛頓運動定律結合萬有引力定律可用以解釋克卜勒行星運動定律。</td>
</tr>
<tr>
<td></td>
<td>CMb-Va-1</td>
<td>過去主導地球長期的自然氣候變化的原理無法完全用來解釋近幾十年來快速的氣候變遷情形。根據目前科學證據了解人類活動是主要因素。</td>
</tr>
<tr>
<td></td>
<td>PKb-Vc-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENb-Vc-3</td>
<td></td>
</tr>
<tr>
<td>學習表現</td>
<td>學習內容</td>
<td>自然科學領域核心素養</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>tr-Vc-1</td>
<td>能運用簡單的數理演算公式及單一的科學證據或理論, 理解自然科學知識或理論及其因果關係, 或提出他人論點的限制, 進而提出不同的論點。</td>
<td>CJa-Va-2 化學反應與化學程序的產率。自S-U-A2 能從一系列的觀察、實驗中取得自然科學數據，並依據科學理論、數理演算公式等方法，進行比較與判斷科學資料於方法及程序上的合理性和判斷的論點來檢核資料的真實性與可信性，提出創新與前瞻的思維來解決問題。</td>
</tr>
<tr>
<td>an-Vc-1</td>
<td>能主動察覺生活中各種自然科學問題的成因，並能根據已知的科學知識提出解決問題的各種假設想法，進而以個人或團體方式設計創新的科學探索方式並得到成果。</td>
<td>CMc-Vc-3 化學在先進科技發展的應用。</td>
</tr>
<tr>
<td>ti-Vc-1</td>
<td>能從日常經驗、科技運用、社會中的科學相關議題、學習活動、自然環境、書刊及網路媒體中，汲取資訊並進行有計畫、有條理的多方觀察，進而能察覺問題。</td>
<td>PMc-Vc-3 科學的態度與方法。</td>
</tr>
<tr>
<td>tm-Vc-1</td>
<td>能正確安全操作適合學習階段的物品、器材儀器、科技設備及資源，能適度創新改善執行方</td>
<td>EEd-Vc-3 天文觀測可在不同的電磁波段進行。</td>
</tr>
<tr>
<td>po-Vc-1</td>
<td>能從日常經驗、科技運用、社會中的科學相關議題、學習活動、自然環境、書刊及網路媒體中，汲取資訊並進行有計畫、有條理的多方觀察，進而能察覺問題。</td>
<td></td>
</tr>
<tr>
<td>pe-Vc-2</td>
<td>能從日常經驗、科技運用、社會中的科學相關議題、學習活動、自然環境、書刊及網路媒體中，汲取資訊並進行有計畫、有條理的多方觀察，進而能察覺問題。</td>
<td></td>
</tr>
<tr>
<td>學習表現</td>
<td>學習內容</td>
<td>自然科學領域核心素養</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>pa-Vc-1</td>
<td>理想氣體三大定律與理想氣體方程式。</td>
<td>自S-U-B1 能合理運用思考智能、製作圖表、使用資訊及數學運算等方法，有效整理自然科學數據或資訊，並能同時利用口語、影像、文字與圖像、繪圖或實物、科學名詞、數學公式、模型等或嘗試以新媒體形式，較廣面性的呈現相關嚴謹之探究過程、發現或成果。</td>
</tr>
<tr>
<td>pa-Vc-2</td>
<td>理想氣體三大定律與理想氣體方程式。</td>
<td>自S-U-B1 能合理運用思考智能、製作圖表、使用資訊及數學運算等方法，有效整理自然科學數據或資訊，並能同時利用口語、影像、文字與圖像、繪圖或實物、科學名詞、數學公式、模型等或嘗試以新媒體形式，較廣面性的呈現相關嚴謹之探究過程、發現或成果。</td>
</tr>
<tr>
<td>pc-Vc-2</td>
<td>自然界的一切交互作用可完全由重力、電磁力、強力、以及弱作用等四種基本交互作用所涵蓋。</td>
<td>自S-U-B1 能合理運用思考智能、製作圖表、使用資訊及數學運算等方法，有效整理自然科學數據或資訊，並能同時利用口語、影像、文字與圖像、繪圖或實物、科學名詞、數學公式、模型等或嘗試以新媒體形式，較廣面性的呈現相關嚴謹之探究過程、發現或成果。</td>
</tr>
<tr>
<td>po-Vc-1</td>
<td>侵臺颱風的路徑主要受太平洋高壓所引導，不同路徑對台灣各地的風雨影響不同。</td>
<td>自S-U-B1 能合理運用思考智能、製作圖表、使用資訊及數學運算等方法，有效整理自然科學數據或資訊，並能同時利用口語、影像、文字與圖像、繪圖或實物、科學名詞、數學公式、模型等或嘗試以新媒體形式，較廣面性的呈現相關嚴謹之探究過程、發現或成果。</td>
</tr>
<tr>
<td>ah-Vc-2</td>
<td>生態系統中的非生物因子與生物因子、能量流轉及元素循環。</td>
<td>自S-U-B1 能合理運用思考智能、製作圖表、使用資訊及數學運算等方法，有效整理自然科學數據或資訊，並能同時利用口語、影像、文字與圖像、繪圖或實物、科學名詞、數學公式、模型等或嘗試以新媒體形式，較廣面性的呈現相關嚴謹之探究過程、發現或成果。</td>
</tr>
<tr>
<td>學習表現</td>
<td>學習內容</td>
<td>自然科學領域核心素養</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>度，審慎檢視其真實性與可信度。</td>
<td>PMc-Vc-2 電在生活中的應用。</td>
<td>於探究、問題解決及預測的資訊，進而能察覺問題或反思媒體報導中與科學相關的內容，以培養求真求實的精神。</td>
</tr>
<tr>
<td>ai-Vc-2</td>
<td>ENb-Vc-2 冰期與間冰期的氣溫變化及海平面的升降，對全球生物與自然環境會造成影響。</td>
<td>透過科學探索與科學思考對生活週遭的事物產生新的體驗及興趣。了解科學的認知方式講求經驗證據性、合乎邏輯性、存疑和反覆檢視。</td>
</tr>
<tr>
<td>an-Vc-2</td>
<td>BMb-Vc-2 孟德爾依據實驗結果推論遺傳現象的規律性。</td>
<td>自S-U-B3 過透了解科學理論的簡約、科學思考的嚴謹與複雜自然現象背後的規律，學會欣賞科學的美。</td>
</tr>
<tr>
<td>ai-Vc-1</td>
<td>CMb-Va-3 科學模型的特性與變化。</td>
<td>透過成功的問題解決經驗，獲得成就感。</td>
</tr>
<tr>
<td>ai-Vc-1</td>
<td>PKd-Vc-6 光子與電子以及所有微觀粒子都具有波粒二象性。</td>
<td>造就臺灣生物多樣性的因素。</td>
</tr>
<tr>
<td>pc-Vc-1</td>
<td>E1b-Vc-2 當水氣達到飽和時，多餘的水氣會凝結或凝固。</td>
<td>自S-U-C1 培養主動關心自然相關議題的社會責任感與公民意識，並建立關懷自然生態與人類永續發展的自我意識。</td>
</tr>
<tr>
<td>pc-Vc-1</td>
<td>Bgc-Va-5 造就臺灣生物多樣性的因素。</td>
<td>能理解同學的探究過程和結果（或經簡化過的科學報告），提出合理而且較完整的疑問或意見。並能對整個探究過程：包括：観察定題、推理實作、數據信效度、資源運用、活動安全、探究</td>
</tr>
<tr>
<td>pc-Vc-1</td>
<td>CMa-Va-1 從化學的主要發展方向和產業成果，建立綠色化學與永續發展的概念，並積極參與科學知識的傳播，促進化學知識進入個人和社會生活。</td>
<td>自S-U-C2 能從團體探究討論中，主動建立與同儕思考辯證、溝通協調與包容不同的意見的能力，進而樂於</td>
</tr>
<tr>
<td></td>
<td>CMa-Va-2 化學化工技術與社會、法律及倫理相關議題。</td>
<td></td>
</tr>
</tbody>
</table>
自然科學領域學習重點

<table>
<thead>
<tr>
<th>學習表現</th>
<th>學習內容</th>
<th>自然科學領域核心素養</th>
</tr>
</thead>
<tbody>
<tr>
<td>結果等，進行評核、形成評價並提出合理的改善方案。</td>
<td>議</td>
<td>分享探究結果或協助他人解決科學問題。</td>
</tr>
<tr>
<td>an-Vc-3</td>
<td>體認科學能幫助人類創造更好的生活條件，但並不能解決人類社會所有的問題，科技發展有時也會引起環境或倫理道德的議題。</td>
<td>BGe-Va-6</td>
</tr>
<tr>
<td>CMe-Vc-2</td>
<td>全球暖化的成因、影響及因應方法。</td>
<td>CNa-Va-2</td>
</tr>
<tr>
<td>PNc-Vc-4</td>
<td>雖然能量守恆，但能量一旦發生形式上的轉換，通常其作功效能會降低。</td>
<td>ENa-Vc-3</td>
</tr>
<tr>
<td>ENa-Vc-3</td>
<td>自S-U-C3</td>
<td>能主動關心全球環境議題，同時體認維護地球環境是地球公民的責任，透過個人實踐，建立多元價值的世界觀。</td>
</tr>
</tbody>
</table>
附錄二：議題適切融入領域課程綱要

壹、前言

「議題」係基於社會發展需要、普遍受到關注，且期待學生應有所理解與行動的一些課題，其攸關現代生活、人類發展與社會價值，具時代性與前瞻性，且常具高度討論性與跨學門性質。十二年國民基本教育本乎總綱「自發」、「互動」及「共好」之基本理念，為與社會脈動、生活情境緊密連結，以議題教育培養學生批判思考及解決問題的能力，提升學生面對議題的責任感與行動力，並能追求尊重多元、同理關懷、公平正義與永續發展等核心價值。

依《總綱》「實施要點」規定，各領域課程設計應適切融入性別平等、人權、環境、海洋、品德、生命、法治、科技、資訊、能源、安全、防災、家庭教育、生涯規劃、多元文化、閱讀素養、戶外教育、國際教育、原住民族教育等議題。各領域/科目可發揮課程與教學之創意與特色，依需求適時融入，不受限於上述議題。同時隨著社會的變遷與時代的推移，議題內涵亦會發生改變或產生新議題，故學校宜對議題具備高度敏覺性，因應環境之變化，活化與深化議題內涵，並依學生的身心發展，適齡、適性地設計具創新、前瞻與統整之課程計畫。

為促進議題教育功能之發揮，各領域/科目「課程綱要」已進行《總綱》所列議題之適切轉化與統整融入。學校、教師及教材研發、出版與審查等相關教育人員應依循各領域/科目「課程綱要」內容，並參考本說明，落實議題融入課程與教學之責任。學校亦可於彈性學習課程/時間及校訂課程中據以規劃相關議題，將議題的精神與價值適切融入學校組織規章、獎懲制度及相關活動，以形塑校園文化，提升學生學習成果。

議題教育的實施包含正式與非正式課程，學校課程的發展與教材編選應以學生經驗為中心，選取生活化教材。在掌握議題之基本理念與不同教育階段之實質涵下，連結領域/科目內容，以問題覺知、知識理解、技能習得及實踐行動等不同層次循序引導學生學習，發展教材並編輯教學手冊。教師教學時，除涵蓋於領域/科目之教材內容外，可透過領域/科目內容之連結、延伸、統整與轉化，進行議題之融入，亦可將人物、典範、習俗或節慶等加入教材，或採隨機教學，並於作業、作品、展演、參觀、社團與團體活動中，以多元方式融入議題。經由討論、對話、批判與反思，使教室成為知識建構與發展的學習社群，增進議題學習之品質。

各該教育主管機關應提供資源以落實議題融入教育，有關《總綱》所列各項議題之完整內涵說明與融入方式等，可參閱「議題融入說明手冊」與十二年國民基本教育課程綱要各領域/科目之課程手冊。
貳、議題學習目標

為使各領域科目課程能適切進行議題融入，並落實教育相關法律及國家政策綱領，以下細列二十九項議題之學習目標，提供學校及教師於相關課程或議題教學時進行適切融入，以與領域科目課程作結合。

<table>
<thead>
<tr>
<th>議題</th>
<th>學習目標</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別平等教育</td>
<td>理解性別的多樣性；覺察性別不平等的存在事實與社會文化中的性別權力關係；建立性別平等的價值信念，落實尊重與包容多元性別差異；付諸行動消除性別偏見與歧視，維護性別人格尊嚴與性別地位實質平等。</td>
</tr>
<tr>
<td>人權教育</td>
<td>了解人權存在的事實、基本概念與價值；發展對人權的價值信念；增強對人權的感受與評價；養成尊重人權的行為及參與實踐人權的行動。</td>
</tr>
<tr>
<td>環境教育</td>
<td>認識與理解人類生存與發展所面對的環境危機與挑戰；探究氣候變遷、資源耗竭與生物多樣性消失，以及社會不正義和環境不正義；思考個人發展、國家發展與人類發展的意義；執行綠色、簡樸與永續的生活行動。</td>
</tr>
<tr>
<td>海洋教育</td>
<td>經驗海洋休閒與重視戲水安全的親海行為；了解海洋社會與感受海洋文化的愛海情懷；探究海洋科學與永續海洋資源的知海素養。</td>
</tr>
<tr>
<td>科技教育</td>
<td>具備科技哲學觀與科技文化的素養；激發持續學習科技及科技設計的興趣；培養科技知識與產品使用的技能。</td>
</tr>
<tr>
<td>能源教育</td>
<td>增進能源基本概念；發展正確能源價值觀；養成節約能源的思維、習慣和態度。</td>
</tr>
<tr>
<td>家庭教育</td>
<td>具備探究家庭發展、家庭與社會互動關係及家庭資源管理的知能；提升積極參與家庭活動的責任感與態度；激發創造家人互動共好的意識與責任，提升家庭生活品質。</td>
</tr>
<tr>
<td>原住民族教育</td>
<td>認識原住民族歷史文化與價值觀；增進跨族群的相互了解與尊重；涵養族群共榮與平等信念。</td>
</tr>
<tr>
<td>品德教育</td>
<td>增進道德發展知能；了解品德核心價值與道德議題；養成知善、樂善與行善的品德素養。</td>
</tr>
<tr>
<td>生命教育</td>
<td>培養探索生命根本課題的知能；提升價值思辨的能力與情意；增進知行合一的修養。</td>
</tr>
<tr>
<td>法治教育</td>
<td>理解法律與法治的意義；習得法律實體與程序的基本知能；追求人權保障與公平正義的價值。</td>
</tr>
<tr>
<td>資訊教育</td>
<td>增進善用資訊解決問題與運算思維能力；預備生活與職涯知能；養成資訊社會應有的態度與責任。</td>
</tr>
<tr>
<td>安全教育</td>
<td>建立安全意識；提升對環境的敏感度、警覺性與判斷力；防範事故傷害發生以確保生命安全。</td>
</tr>
<tr>
<td>防災教育</td>
<td>認識災害成因；養成災害風險管理與災害防救能力；強化防救行動之責任、態度與實踐力。</td>
</tr>
<tr>
<td>生涯規劃教育</td>
<td>了解個人特質、興趣與工作環境；養成生涯規劃知能；發展洞察趨勢的敏感度與應變的行動力。</td>
</tr>
<tr>
<td>多元文化教育</td>
<td>認識文化的豐富與多樣性；養成尊重差異與追求實質平等的跨文化素養；維護多元文化價值。</td>
</tr>
<tr>
<td>閱讀素養教育</td>
<td>養成運動文本思考、解決問題與建構知識的能力；涵育樂於閱讀態度；開展多元閱讀素養。</td>
</tr>
<tr>
<td>戶外教育</td>
<td>強化與環境的連接感；養成友善環境的態度；發展社會覺知與互動的技能。</td>
</tr>
<tr>
<td>議題</td>
<td>學習目標</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>國際教育</td>
<td>養成參與國際活動的知能；激發跨文化的觀察力與反思力；發展國家主體的國際意識與責任感。</td>
</tr>
</tbody>
</table>

8 項議題所涉之教育相關法律及國家政策綱領如下：

<table>
<thead>
<tr>
<th>註</th>
<th>教育相關法律或國家政策綱領有：</th>
</tr>
</thead>
<tbody>
<tr>
<td>註1</td>
<td>《性別平等教育法》、《性別平等政策綱領》、《消除對婦女一切形式歧視公約施行法》等。</td>
</tr>
<tr>
<td>註2</td>
<td>《人權教育之教育相關法律或國家政策綱領》、《公民與政治權利國際公約及經濟社會文化權利國際公約施行法》、《兒童權利公約施行法》、《身心障礙者權利公約施行法》等。</td>
</tr>
<tr>
<td>註3</td>
<td>《環境教育之教育相關法律或國家政策綱領》、《環境教育法》、《國家環境教育綱領》等。</td>
</tr>
<tr>
<td>註4</td>
<td>《海洋教育之教育相關法律或政策綱領》、《國家海洋政策綱領》等。</td>
</tr>
<tr>
<td>註5</td>
<td>《科技教育之教育相關法律或政策綱領》、《科學技術基本法》等。</td>
</tr>
<tr>
<td>註6</td>
<td>《能源教育之教育相關法律或政策綱領》、《能源發展綱領》等。</td>
</tr>
<tr>
<td>註7</td>
<td>《家庭教育之教育相關法律或政策綱領》、《家庭教育法》等。</td>
</tr>
<tr>
<td>註8</td>
<td>《原住民族教育之教育相關法律或政策綱領》、《原住民族基本法》、《原住民族教育法》、《原住民族語言發展法》等。</td>
</tr>
</tbody>
</table>

參、議題適切融入之學習主題與實質內涵及學習重點舉例說明

一、議題之學習主題與實質內涵

有鑒於性別平等、人權、環境、海洋教育議題為延續九年一貫課程綱要，已具完整之內涵架構，有利延伸規劃各領域/科目課程之適切融入，並能豐富與落實核心素養之內涵，故以性別平等、人權、環境、海洋教育議題為例，呈現其學習主題與實質內涵，以作為課程設計、教材編審與教學實施之參考。

有關本領域融入議題之選擇、作法與示例參考說明，可參閱「自然科學領域課程手冊」。

<table>
<thead>
<tr>
<th>教育階段</th>
<th>議題實質內涵</th>
</tr>
</thead>
<tbody>
<tr>
<td>議題/學習主題</td>
<td>國民小學</td>
</tr>
<tr>
<td>性別平等教育</td>
<td>性 E1</td>
</tr>
<tr>
<td>性別平等教育</td>
<td>性 E2</td>
</tr>
<tr>
<td>性別平等教育</td>
<td>性 E3</td>
</tr>
<tr>
<td>教育階段</td>
<td>議題實質內涵</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>國民小學</td>
</tr>
<tr>
<td></td>
<td>性 E4</td>
</tr>
<tr>
<td>身體自主權的尊重與維護</td>
<td>識別身體界限與尊重他人的身體自主權。</td>
</tr>
<tr>
<td></td>
<td>性 E5</td>
</tr>
<tr>
<td>性騷擾、性侵害與性霸凌的防治</td>
<td>識別性騷擾、性侵害、性霸凌的概念及其求助管道。</td>
</tr>
<tr>
<td></td>
<td>性 E6</td>
</tr>
<tr>
<td>語言、文字與符號的性別意涵分析</td>
<td>了解圖像、語言與文字的性別意涵，使用性別平等的語言與文字進行溝通。</td>
</tr>
<tr>
<td></td>
<td>性 E7</td>
</tr>
<tr>
<td>科技、資訊與媒體的性別識讀</td>
<td>解讀各種媒體所傳遞的性別刻板印象。</td>
</tr>
<tr>
<td></td>
<td>性 E8</td>
</tr>
<tr>
<td>性別權益與公共參與</td>
<td>了解不同性別者的成就與貢獻。</td>
</tr>
<tr>
<td></td>
<td>性 E9</td>
</tr>
<tr>
<td></td>
<td>性 E10</td>
</tr>
<tr>
<td>性別權利關係與互動</td>
<td>辨識性別刻板的情感表達與人際互動。</td>
</tr>
<tr>
<td>教育階段</td>
<td>議題/學習主題</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>合宜表達情感的能力。</td>
</tr>
<tr>
<td></td>
<td>議題實質內涵</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>性別與多元文化</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>人權的基本概念</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>人權與責任</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>人權教育</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>人權與民主法治</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>人權與生活實踐</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>教育階段</td>
<td>議題/學習主題</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>人權違反與救濟</td>
<td>人E6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>人權重要主題</td>
<td>人E7</td>
</tr>
<tr>
<td></td>
<td>人E8</td>
</tr>
<tr>
<td></td>
<td>人E9</td>
</tr>
<tr>
<td></td>
<td>人E10</td>
</tr>
<tr>
<td></td>
<td>人E11</td>
</tr>
<tr>
<td>教育階段</td>
<td>議題/學習主題</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>環境倫理</td>
<td>環 E1 參與戶外學習與自然體驗，覺知自然環境的美、平衡與完整性。</td>
</tr>
<tr>
<td>環境教育</td>
<td>環 E2 覺知生物生命的美與價值，關懷動、植物的生命。了解人與自然和諧共生，進而保護重要棲地。</td>
</tr>
<tr>
<td>永續發展</td>
<td>環 E3 覺知經濟發展與工業發展對環境的衝擊。</td>
</tr>
<tr>
<td>氣候變遷</td>
<td>環 E4 覺知天氣的溫度、雨量要素與覺察氣候的趨勢。</td>
</tr>
<tr>
<td></td>
<td>環 E5 覺知人類的生活型態對其他生物與生態系的衝擊。</td>
</tr>
<tr>
<td></td>
<td>環 E6 覺知人類過度的物質需求會對未來世代造成衝擊。</td>
</tr>
</tbody>
</table>
| | 環 E7 覺知人類社會糧食分配不均與貧富差異太大的問題。 | 環 J6 了解世界人口數量增加、糧食供給與營養的永續議題。 | 環 U6 探討國際與國內對氣候變遷的應對措施，了解因
<table>
<thead>
<tr>
<th>教育階段</th>
<th>國民小學</th>
<th>國民中學</th>
<th>高級中等學校</th>
</tr>
</thead>
<tbody>
<tr>
<td>環境</td>
<td>極端氣候的現象。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環E9</td>
<td>覺知氣候變遷對生活、社會及環境造成衝擊。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環E10</td>
<td>覺知人類的行為是導致氣候變遷的原因。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>議題實質內涵</td>
<td>暖化、及氣候變遷的關係。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環J8</td>
<td>了解台灣生態環境及社會發展面對氣候變遷的脆弱性與韌性。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環J9</td>
<td>了解氣候變遷減緩與適應的涵義，以及台灣因應氣候變遷調適的政策。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U7</td>
<td>應氣候變遷的國際公約的精神。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>災害防救</td>
<td>認識台灣曾經發生的重災害。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環E11</td>
<td>養成對災害的警覺心及敏感度，對災害基本的了解，並能避免災害的發生。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環E12</td>
<td>覺知天然災害的頻率增加且衝擊擴大。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環E13</td>
<td>了解天然災害對人類生活、生命、社會發展與經濟產業的衝擊。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環J10</td>
<td>了解天然災害的人為影響因子。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環J11</td>
<td>認識不同類型災害可能伴隨的危險，學習適當預防與避難行為。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環J12</td>
<td>參與防災疏散演練。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U8</td>
<td>從災害防救法規了解台灣災害防救的政策規劃。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U9</td>
<td>分析實際監測數據，探究天然災害頻率的趨勢與預估。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U10</td>
<td>執行災害防救的演練。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U11</td>
<td>運用繪圖科技與災害資料調查，繪製防災地圖。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>能源資源永續利用</td>
<td>覺知人類生產與發展需要利用能源及資源，學習在生活中直接利用自然能源或自然形式的物質。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環E14</td>
<td>覺知能源資源過度利用會導致環境汙染與資源耗竭的問題。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環E15</td>
<td>了解能量流動及物質循環與生態系統運作的關係。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環J14</td>
<td>認識產品的生命周期，探討其生態足跡、水足跡及碳足跡。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環J15</td>
<td>了解各種替代能源的基本原理與開發。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U12</td>
<td>了解循環型社會的涵義與實踐綠色消費與友善環境的生活模式。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U13</td>
<td>了解環境成本、汙染者付費、綠色設計及清潔生產機制。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 環U14 | 了解國際及
<table>
<thead>
<tr>
<th>教育階段</th>
<th>議題/學習主題</th>
<th>國民小學</th>
<th>國民中學</th>
<th>高級中等學校</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>環E16</td>
<td>環E17</td>
<td>環U15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>了解物質循環與資源回收利用的原理。</td>
<td>養成日常生活節約用水、用電、物質的行為，減少資源的消耗。</td>
<td>我國對能源利用之相關法律制定與行政措施。</td>
</tr>
<tr>
<td></td>
<td>海洋休閒</td>
<td>海E1</td>
<td>海E2</td>
<td>海U1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>喜歡親水活動，重視水域安全。</td>
<td>學會游泳技巧，熟悉自救知能。</td>
<td>熟練各項水域運動，具備安全之技能。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>海E3</td>
<td></td>
<td>認識並參與安全的海洋生態旅遊。</td>
</tr>
<tr>
<td></td>
<td>海洋教育</td>
<td>海E4</td>
<td>海E5</td>
<td>海U2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>認識家鄉或鄰近的水域環境與產業。</td>
<td>探討臺灣開拓史與海洋的關係。</td>
<td>規劃並參與各種水域休閒與觀光活動。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>海E6</td>
<td></td>
<td>了解漁村與近海景觀、人文風情與生態旅遊的關係。</td>
</tr>
<tr>
<td></td>
<td>海洋社會</td>
<td>海E7</td>
<td>海E8</td>
<td>海U3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>閱讀、分享及創作與海洋有關的故事。</td>
<td>了解海洋民俗活動、宗教信仰與生活</td>
<td>參與多元海洋休閒與水域活動，熟練各種水域求生技能。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>海E9</td>
<td></td>
<td>認識並參與安全的海洋生態旅遊。</td>
</tr>
<tr>
<td></td>
<td>海洋文化</td>
<td>海E10</td>
<td>海E11</td>
<td>海U4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>閱讀、分享及創作以海洋為背景的文學作品。</td>
<td>了解我國與其他國家海洋水産、工程、運輸、能源、與旅遊等產業的結構與發展。</td>
<td>分析海洋相關產業與科技發展，並評析其與經濟活動的關係。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>海E12</td>
<td></td>
<td>認識海洋相關法律，了解並關心海洋政策。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>海E13</td>
<td></td>
<td>評析臺灣與其他國家海洋歷史的演變及異同。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>海E14</td>
<td></td>
<td>認識臺灣海洋權益與戰略地位。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>海E15</td>
<td></td>
<td>善用各種文體或寫作技巧，創作以海洋為背景的文學作品。</td>
</tr>
</tbody>
</table>
| | | 海E16 | | 體認各種海
<table>
<thead>
<tr>
<th>教育階段</th>
<th>國民小學</th>
<th>國民中學</th>
<th>高級中等學校</th>
</tr>
</thead>
<tbody>
<tr>
<td>議题/學習主題</td>
<td>議題實質內涵</td>
<td>議題實質內涵</td>
<td>議題實質內涵</td>
</tr>
<tr>
<td>海E9</td>
<td>透過肢體、聲音、圖像及道具等，進行以海洋為主題之藝術表現。</td>
<td>藝術文化的異同。</td>
<td>海U10</td>
</tr>
<tr>
<td>海E10</td>
<td>認識水與海洋的特性及其與生活的應用。</td>
<td>認識海洋生物與生態。</td>
<td>海U11</td>
</tr>
<tr>
<td>海E11</td>
<td>認識海洋生物與生態。</td>
<td>認識海洋生物與生態之關聯。</td>
<td>海U12</td>
</tr>
<tr>
<td>海E12</td>
<td>認識海上交通工具和科技發展的關係。</td>
<td>探討海洋生物與生態環境之關聯。</td>
<td>海U13</td>
</tr>
<tr>
<td>海E13</td>
<td>認識生活中常見的水產品。</td>
<td>認識海洋生物資源之種類、用途、復育與保育方法。</td>
<td>海U14</td>
</tr>
<tr>
<td>海E14</td>
<td>了解海水中含有鹽等成分。</td>
<td></td>
<td>海U16</td>
</tr>
</tbody>
</table>
| 海E15 | | | 海U17 | 了解海洋礦
教育階段

<table>
<thead>
<tr>
<th>議題/學習主題</th>
<th>國民小學</th>
<th>國民中學</th>
<th>高級中等學校</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別平等教育</td>
<td>海E15</td>
<td>海J17</td>
<td>海U18</td>
</tr>
<tr>
<td>生理性別、性傾向、性別特質與性別認同多樣性的尊重</td>
<td>海E16</td>
<td>海J18</td>
<td>海U19</td>
</tr>
<tr>
<td>性別角色的突破與性別歧視的消除</td>
<td>海E17</td>
<td>海J19</td>
<td>海U20</td>
</tr>
<tr>
<td>性別角色的突破與性別歧視的消除</td>
<td>海E18</td>
<td>海J20</td>
<td></td>
</tr>
</tbody>
</table>

議題實質內涵

<table>
<thead>
<tr>
<th>議題</th>
<th>學習主題</th>
<th>實質內涵</th>
<th>融入課程綱要學習重點之示例</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別平等教育</td>
<td>性E1</td>
<td>認識生理性別、性傾向、性別特質與性別認同的多元面貌。</td>
<td>INb-Ⅱ-7</td>
</tr>
<tr>
<td>性別平等教育</td>
<td>性J1</td>
<td>接納自我與他人的性傾向、性別特質與性別認同。</td>
<td>INd-Ⅲ-6</td>
</tr>
<tr>
<td>性別平等教育</td>
<td>性U1</td>
<td>肯定自我與尊重他人的性傾向、性別特質與性別認同，突破個人發展的性別限制。</td>
<td>Ga-IV-2</td>
</tr>
<tr>
<td>性別平等教育</td>
<td>性E2</td>
<td>覺察性別角色的刻板印象，了解家庭、學校與職業的分工，不應受性別的限制。</td>
<td>an-III-3</td>
</tr>
<tr>
<td>性別平等教育</td>
<td>性J3</td>
<td>檢視家庭、學校、職場中基於性別刻板印象的偏見與歧視。</td>
<td>INf-Ⅲ-1</td>
</tr>
</tbody>
</table>

二、議題適切融入「自然科學領域課程綱要」學習重點舉例說明

議題融入自然科學領域之內容涵蓋議題之知識、情意與行動，重視對議題認知與敏感度之提升、價值觀與責任感之培養，以及生活實踐之履行。進行議題教育時，透過本領域之學習重點與議題實質內涵之連結、延伸、統整與轉化，培養學生對議題探究、思辨與實踐的能力。下表僅先列舉性別平等教育、人權教育、環境教育與海洋教育四項議題之學習主題與實質內涵，其融入本課程綱要「學習重點」之示例，作為教材編選與教學實施之參考。
<table>
<thead>
<tr>
<th>議題</th>
<th>學習主題</th>
<th>實質內涵</th>
<th>融入課程綱要學習重點之示例</th>
</tr>
</thead>
<tbody>
<tr>
<td>語言、文字與符號的性別意涵分析</td>
<td>性 E6</td>
<td>了解圖像、語言與文字的性別意涵，使用性別平等的語言與文字進行溝通。</td>
<td>能利用簡單形式的口語、文字、影像(例如：攝影、錄影)、繪圖或實物-科學名詞、數學公式、模型等，表達探究之過程、發現或成果。</td>
</tr>
<tr>
<td></td>
<td>性 J6</td>
<td>探究各種符號中的性別意涵及人際溝通中的性別問題。</td>
<td></td>
</tr>
<tr>
<td>科技、資訊與媒體的性別識讀</td>
<td>性 E7</td>
<td>解讀各種媒體所傳遞的性別刻板印象。</td>
<td>能從學習活動、日常生活、自然環境、書刊及網路媒體等察覺問題。</td>
</tr>
<tr>
<td></td>
<td>性 J7</td>
<td>解析各種媒體所傳遞的性別迷思、偏見與歧視。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>性 J8</td>
<td>解讀科技產品的性別意涵。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>性 U7</td>
<td>批判科技、資訊與媒體的性別意識形態，並尋求改善策略。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>性 U8</td>
<td>發展科技與資訊能力，不受性別的限制。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>了解科學的認知方式講求經驗證據性、合乎邏輯性、存疑和反覆檢視。</td>
<td>體認科學能幫助人類創造更好的生活條件，但並不能解決人類社會所有的問題。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科技發展有時也會引起環境或倫理道德的議題。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>了解科學知識發展的歷史是與社會、文化、政治、經濟緊密相關。</td>
</tr>
<tr>
<td>議題</td>
<td>學習主題</td>
<td>實質內涵</td>
<td>融入課程綱要學習重點之示例</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>性別權力關係與互動</td>
<td>性 J11</td>
<td>去除性別刻板與性別偏見的情感表達與溝通，具備與他人平等互動的能力。</td>
<td>tc-Va-1 能比較科學事實在不同論點、證據或事實解釋的合理性，並透過探索證據、挑戰思想、回應多元觀點的過程，進行批判論點或判斷科學證據的正確性。</td>
</tr>
<tr>
<td></td>
<td>性 J12</td>
<td>省思與他人的性別權力關係，促進平等與良好的互動。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>性 J9</td>
<td>認識性別權益相關法律與性別平等運動的楷模，具備關懷性別少數的態度。</td>
<td>pc-IV-1 能理解同學的探究過程和結果(或經簡化過的科學報告)，提出合理而且具有根據的疑問或意見。並能對問題、探究方法、證據及發現，彼此間的符應情形，進行檢核並提出可能的改善方案。</td>
</tr>
<tr>
<td></td>
<td>性 J10</td>
<td>探究社會中資源運用與分配的性別不平等，並提出解決策略。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>性 U9</td>
<td>了解性別平等運動的歷史發展，主動參與促進性別平等的社會公共事務，並積極維護性別權益。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>性 U10</td>
<td>檢視性別相關政策，並提出看法。</td>
<td></td>
</tr>
<tr>
<td>性別權益與公共參與</td>
<td>性 U13</td>
<td>探究本土與國際社會的性別與家庭議題。</td>
<td>Ma-IV-2 保育工作不是只有科學家能夠處理，所有的公民都有權利及義務，共同研究、監控及維護生物多樣性。</td>
</tr>
<tr>
<td></td>
<td>性 U14</td>
<td>善用資源以拓展性別平等的本土與國際視野。</td>
<td>Mb-IV-2 科學史上重要發現的過程，以及不同性別、背景、族群者於其中的貢獻。</td>
</tr>
<tr>
<td>性別與多元文化</td>
<td>性 U2</td>
<td>探討國際人權議題，並負起全球公民的和平與永續發展責任。</td>
<td>an-Va-3 了解科學知識發展的歷史是與社會、文化、政治、經濟緊密相關。</td>
</tr>
<tr>
<td>人權教育</td>
<td>人 E6</td>
<td>覺察個人的偏見並避免歧視行為的產生。</td>
<td>CNa-Vc-1 永續發展在於滿足當代人之需求，又不危及下一代之發展。</td>
</tr>
<tr>
<td>人權與責任</td>
<td></td>
<td></td>
<td>an-III-3 體認不同性別、族群等文化背景的人，都</td>
</tr>
<tr>
<td>議題</td>
<td>學習主題</td>
<td>實質內涵</td>
<td>融入課程綱要學習重點之示例</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>人權重要主題</td>
<td>人UI1</td>
<td>理解人類歷史上發生大屠殺的原因，思考如何避免其再發生。</td>
<td>an-Vc-3 体認科學能幫助人類創造更好的生活條件，但並不能解決人類社會所有的問題，科技發展有時也會引起環境或倫理道德的議題。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CMa-Vc-1 化學製造流程對日常生活、社會、經濟、環境及生態的影響。</td>
</tr>
<tr>
<td>環境倫理</td>
<td>環E1</td>
<td>參與戶外學習與自然體驗，覺知自然環境的美、平衡、與完整性。</td>
<td>INg-Ⅲ-1 自然景觀和環境一旦被改變或破壞，極難恢復。</td>
</tr>
<tr>
<td></td>
<td>環E2</td>
<td>覺知生物生命的美與價值，關懷動植物的生命。</td>
<td>INd-Ⅲ-6 生物種類具有多樣性，生物生存的環境亦具有多樣性。</td>
</tr>
<tr>
<td></td>
<td>環E3</td>
<td>了解人類與自然相持共生，進而保護重要棲地。</td>
<td>Gc-Ⅳ-2 地球上有形形色色的生物，在生態系中擔任不同的角色，發揮不同的功能，有助於維持生態系的穩定。</td>
</tr>
<tr>
<td></td>
<td>環J1</td>
<td>了解生物多樣性及環境承載力的重要性。</td>
<td>ENa-Vc-3 認識地球環境有助於經濟、生態、文化及政策四個面向的永續發展。</td>
</tr>
<tr>
<td></td>
<td>環J2</td>
<td>了解人類與周遭動物的互動關係，認識動物需求，並關切動物福利。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>環U1</td>
<td>關心居住地區，因保護所帶來的發展限制及權益受損，理解補償正義的重要性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>環U2</td>
<td>理解人為破壞對其他物種與棲地所帶來的生態不正義，進而支持相關環境保護政策。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>環E4</td>
<td>覺知經濟發展與工業發展對環境的衝擊。</td>
<td>INf-Ⅱ-5 人類活動對環境造成影響。</td>
</tr>
<tr>
<td></td>
<td>環E5</td>
<td>覺知人類的生活型態對其他生物與生態系的衝擊。</td>
<td>INg-Ⅲ-2 人類活動與其他生物的活動會相互影響，不當引進外來物種可能造成經濟損失和生態破壞。</td>
</tr>
<tr>
<td></td>
<td>環E6</td>
<td>覺知人類過度的物質需求會對未來世代造成衝擊。</td>
<td>Na-Ⅳ-6 人類社會的發展必須建立在保護地球自然環境的基礎上。</td>
</tr>
<tr>
<td></td>
<td>環J4</td>
<td>了解永續發展的意義（環境、社會、與經濟的均衡發展）與原則。</td>
<td>Nc-Ⅳ-5 新興能源的科技，例如：油電混合動力車、太陽能飛機等。</td>
</tr>
<tr>
<td></td>
<td>環J5</td>
<td>了解聯合國推動永續發展的背景與趨勢。</td>
<td>ENa-Vc-2 節用資源與合理開發</td>
</tr>
<tr>
<td>議題</td>
<td>學習主題</td>
<td>實質內涵</td>
<td>融入課程綱要學習重點之示例</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>環 U3</td>
<td>探討臺灣二十一世紀議程的內涵與相關政策。</td>
<td>粮食供給與營養的永續議題。</td>
<td>CNa-V c-2 將永續發展的理念應用於生活中。</td>
</tr>
<tr>
<td>環 U4</td>
<td>思考生活品質與人類發展的意義, 並據以思考與永續發展的關係。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環 U5</td>
<td>採行永續消費與簡樸生活的生活型態，促進永續發展。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>氣候變遷</td>
<td>環 E8</td>
<td>認識天氣的溫度、雨量要素與氣候的趨勢及極端氣候的現象。</td>
<td>INd-II-6 一年四季氣溫會有所變化，天氣也會有所不同。氣象報告可以讓我們知道天氣的可能變化。</td>
</tr>
<tr>
<td>環 E9</td>
<td>覺知氣候變遷會對生活、社會及環境造成衝擊。</td>
<td>INf-II-4 季節的變化與人類生活的關係。</td>
<td></td>
</tr>
<tr>
<td>環 E10</td>
<td>覺知人類的行為是導致氣候變遷的原因。</td>
<td>INg-III-4 人類的活動會造成氣候變遷，加劇對生態與環境的影響。</td>
<td></td>
</tr>
<tr>
<td>環 J7</td>
<td>透過「碳循環」，了解化石燃料與溫室氣體、全球暖化、及氣候變遷的關係。</td>
<td>Nb-IV-2 氣候變遷產生的衝擊有海平面上升、全球暖化、異常降水等現象。</td>
<td></td>
</tr>
<tr>
<td>環 J8</td>
<td>了解台灣生態環境及社會發展面對氣候變遷的脆弱性與韌性。</td>
<td>Ma-IV-3 不同的材料對生活及社會的影響。</td>
<td></td>
</tr>
<tr>
<td>環 J9</td>
<td>了解氣候變遷減緩與調適的涵義，以及台灣國因應氣候變遷調適的政策。</td>
<td>Nb-IV-3 因應氣候變遷的方法有減緩與調適。</td>
<td></td>
</tr>
<tr>
<td>環 U6</td>
<td>探究國際與國內對氣候變遷的應對措施，了解因應氣候變遷的國際公約的精神。</td>
<td>ENb-V c-4 因應氣候變遷的調適有許多面向與方法。</td>
<td></td>
</tr>
<tr>
<td>環 U7</td>
<td>收集並分析在地能源的消耗與排放的趨勢，思考因制改制的解決方案，參與集體的行動。</td>
<td>E1b-V c-6 天氣圖是由各地氣象觀測資料繪製而成，用以分析天氣。</td>
<td></td>
</tr>
<tr>
<td>災害防救</td>
<td>環 E11</td>
<td>識別台灣曾經發生的重大災害。</td>
<td>INf-III-5 臺灣的主要天然災害之認識及防災避難。</td>
</tr>
<tr>
<td>環 E12</td>
<td>養成對災害的警覺心及敏感度，對災害有基本的了解，並能避免災害的發生。</td>
<td>INd-II-7 天氣預報常用雨量、溫度、風向、風速等資料來表達天氣狀況，這些資料可以使用適當儀器測得。</td>
<td></td>
</tr>
<tr>
<td>環 E13</td>
<td>覺知天然災害的頻率增加且衝擊擴大。</td>
<td>Md-IV-2 颱風主要發生在七月至九月，並容易造成生命財產的損失。</td>
<td></td>
</tr>
<tr>
<td>環 J10</td>
<td>了解天然災害對人類生活、生命、社會發展、與經濟產業的衝擊。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>議題</td>
<td>學習主題</td>
<td>實質內涵</td>
<td>融入課程綱要學習重點之示例</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>環J11</td>
<td>了解天然災害的人為影響因子。</td>
<td>Md-IV-4</td>
<td>臺灣位處於板塊交界，因此地震頻仍，常造成災害。</td>
</tr>
<tr>
<td>環J12</td>
<td>認識不同類型災害可能伴隨的危險，學習適當預防與避難行為。</td>
<td>Lb-IV-2</td>
<td>人類活動會改變環境，也可能影響其他生物的生存。</td>
</tr>
<tr>
<td>環J13</td>
<td>參與防災疏散演練。</td>
<td>pa-Vc-1</td>
<td>能合理運用思考智能，製作圖表、使用資訊及數學等方法，有效整理資訊或數據。</td>
</tr>
<tr>
<td>環U8</td>
<td>從災害防救法規，了解台灣災害防救的政策規劃。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U9</td>
<td>分析實際監測數據，探究天然災害頻率的趨勢與預估。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U10</td>
<td>執行灾害防救的演練。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環U11</td>
<td>運用繪圖科技與災害資料調查，繪製防災地圖。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環E14</td>
<td>覺知人類生存與發展需要利用能源及資源，學習在生活中直接利用自然能源或自然形式的物質。</td>
<td>INg-II-1</td>
<td>自然環境中有許多資源，人類生存與生活需依賴自然環境中的各種資源，但自然資源都是有限的，需要珍惜使用。</td>
</tr>
<tr>
<td>環E15</td>
<td>覺知能資源過度利用會導致環境汙染與資源耗竭的問題。</td>
<td>INf-II-7</td>
<td>水與空氣汙染會對生物產生影響。</td>
</tr>
<tr>
<td>環E16</td>
<td>了解物質循環與資源回收利用的原理。</td>
<td>INg-II-3</td>
<td>可利用垃圾減量、資源回收、節約能源等方法來保護環境。</td>
</tr>
<tr>
<td>環E17</td>
<td>養成日常生活節約用水、用電、物質的行為，減少資源的消耗。</td>
<td>INa-III-10</td>
<td>在生態系中，能量經由食物鏈在不同物種間流動與循環。</td>
</tr>
<tr>
<td>環J14</td>
<td>了解能量流動及物質循環與生態系統運作的關係。</td>
<td>Bd-IV-1</td>
<td>生態系統中的能量來源是太陽，能量會經由食物鏈在不同生物間流轉。</td>
</tr>
<tr>
<td>環J15</td>
<td>認識產品的生命週期，探討其生態足跡、水足跡及碳足跡。</td>
<td>Bd-IV-2</td>
<td>在生態系中，碳元素會出現在不同的物質中（例如：二氧化碳、葡萄糖），在生物與無生物間循環使用。</td>
</tr>
<tr>
<td>環J16</td>
<td>了解各種替代能源的基本原理與發展趨勢。</td>
<td>Me-IV-4</td>
<td>溫室氣體與全球暖化。</td>
</tr>
<tr>
<td>環U12</td>
<td>了解循環型社會的涵意與執行策略，實踐綠色消費與友善環境的生活模式。</td>
<td>Nc-IV-3</td>
<td>化石燃料的形成與特性。</td>
</tr>
<tr>
<td>環U13</td>
<td>了解環境成本、汙染者付費、綠色設計及清潔生產機制。</td>
<td>CNc-Vc-1</td>
<td>新興能源與替代能源在臺灣的發展現況。</td>
</tr>
<tr>
<td>環U14</td>
<td>了解國際及我國對能源利用之相關法律制定與政策措施。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>議題</td>
<td>學習主題</td>
<td>實質內涵</td>
<td>融入課程綱要學習重點之示例</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>海洋社會</td>
<td>海J4</td>
<td>了解海洋水產、工程、運輸、能源、與旅遊等產業的結構與發展。</td>
<td>Ma-IV-4 各種發電方式與新興的能源科技對社會、經濟、環境及生態的影響。</td>
</tr>
<tr>
<td></td>
<td>海E11</td>
<td>認識海洋生物的生態。</td>
<td>INc- II-8 不同的環境有不同種的生物生存。</td>
</tr>
<tr>
<td></td>
<td>海E12</td>
<td>認識海上交通工具和科技發展的關係。</td>
<td>INc-III-9 不同的環境條件影響生物的種類和分布，以及生物間的食物關係，因而形成不同的生態系。</td>
</tr>
<tr>
<td></td>
<td>海J12</td>
<td>探討臺灣海岸地形與近海的特色、成因與災害。</td>
<td>Nb-IV-2 氣候變遷產生的衝擊對海平面升?全球暖化?異常降水等現象。</td>
</tr>
<tr>
<td></td>
<td>海J14</td>
<td>探討海洋生物與生態環境之關聯。</td>
<td>Gc-IV-2 地球上有形形色色的生物，在生態系中擔任不同的角色，發揮不同的功能，有助於維持生態系的穩定。</td>
</tr>
<tr>
<td></td>
<td>海J15</td>
<td>探討船舶的種類、構造及原理。</td>
<td>Na-IV-1 利用生物資源會影響生物間相互依存的關係。</td>
</tr>
<tr>
<td></td>
<td>海U11</td>
<td>了解海浪、海嘯、與黑潮等海洋的物理特性，以及鹽度、礦物質等海洋的化學成分。</td>
<td>Mc-IV-3 生活中對各種材料進行加工與運用。</td>
</tr>
<tr>
<td></td>
<td>海U13</td>
<td>探討海洋環境變化與氣候變遷的相關性。</td>
<td>Elb-Vc-7 大氣與海洋的交互作用會影響天氣，造成氣候變化，例如：聖嬰現象。</td>
</tr>
<tr>
<td></td>
<td>海U14</td>
<td>了解全球水圈、生態系與生物多樣性的關係。</td>
<td>ENb-Vc-4 因應氣候變遷的調適有許多面向與方法。</td>
</tr>
<tr>
<td></td>
<td>海U15</td>
<td>熟悉海水淡化、船舶運輸、海洋能源、礦產探勘與開發等海洋相關應用科技。</td>
<td>CNc-Vc-1 新興能源與替代能源在臺灣的發展現況。</td>
</tr>
<tr>
<td>海洋科學與技術</td>
<td>海E15</td>
<td>認识家鄉常見的河流與海洋資源，並珍惜自然資源。</td>
<td>INf-III-4 人類日常生活中所依賴的經濟活動及栽培養殖的方法。</td>
</tr>
<tr>
<td></td>
<td>海J16</td>
<td>認識海洋生物資源之種類、用途、復育與保育方法。</td>
<td>Lb-IV-2 人類活動會改變環境，也可能影響其他生物的生存。</td>
</tr>
<tr>
<td></td>
<td>海J17</td>
<td>了解海洋非生物資源之種類與應用。</td>
<td>Ma-IV-2 保育工作不是只有科學家能夠處理，所有的公民都有權利</td>
</tr>
<tr>
<td>議題</td>
<td>學習主題</td>
<td>實質內涵</td>
<td>融入課程綱要學習重點之示例</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>海J19</td>
<td>了解海洋資源之有限性，保護海洋環境。</td>
<td>及義務，共同研究、監控及維護生物多樣性。</td>
<td></td>
</tr>
<tr>
<td>海J20</td>
<td>了解我國的海洋環境問題，並積極參與海洋保護行動。</td>
<td>生命科學的進步，有助於解決社會中發生的農業、食品、能源、醫藥，以及環境相關的問題。</td>
<td></td>
</tr>
<tr>
<td>海U16</td>
<td>探討海洋生物資源管理策略與永續發展。</td>
<td>生物保育知識與技能在防治天然災害的應用。</td>
<td></td>
</tr>
<tr>
<td>海U17</td>
<td>了解海洋礦產與能源等資源，以及其經濟價值。</td>
<td>環境污染物對生物生長的影響及應用。</td>
<td></td>
</tr>
<tr>
<td>海U18</td>
<td>了解海洋環境污染造成海洋生物與環境累積的後果，並提出因應對策。</td>
<td>將永續發展的理念應用於生活中。</td>
<td></td>
</tr>
<tr>
<td>海U19</td>
<td>了解全球的海洋環境問題，並熟悉或參與海洋保護行動。</td>
<td>新興能源與替代能源在臺灣的發展現況。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>節用資源與合理開發，可以降低人類對地球環境的影響，以利永續發展。</td>
<td></td>
</tr>
<tr>
<td>思考智能</td>
<td>問題解決</td>
<td>科學的態度與本質</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>想像創造</td>
<td>培養科學探究的興趣</td>
<td>培養科學探究的興趣</td>
<td></td>
</tr>
<tr>
<td>推理論證</td>
<td>培養科學探究的興趣</td>
<td>培養科學探究的興趣</td>
<td></td>
</tr>
<tr>
<td>思考實驗</td>
<td>培養科學探究的興趣</td>
<td>培養科學探究的興趣</td>
<td></td>
</tr>
<tr>
<td>思考實驗</td>
<td>培養科學探究的興趣</td>
<td>培養科學探究的興趣</td>
<td></td>
</tr>
<tr>
<td>建立模型</td>
<td>培養科學探究的興趣</td>
<td>培養科學探究的興趣</td>
<td></td>
</tr>
<tr>
<td>觀察非</td>
<td>培養科學探究的興趣</td>
<td>培養科學探究的興趣</td>
<td></td>
</tr>
<tr>
<td>.Apply</td>
<td>培養科學探究的興趣</td>
<td>培養科學探究的興趣</td>
<td></td>
</tr>
</tbody>
</table>

附錄三：總綱核心素養與自然科學領域課程綱要各教育階段學習表現關聯表

<table>
<thead>
<tr>
<th>自主行動</th>
<th>自主行動</th>
<th>自主行動</th>
</tr>
</thead>
<tbody>
<tr>
<td>自- E-A1</td>
<td>自- E-A2</td>
<td>自- E-A3</td>
</tr>
<tr>
<td>自- E-B1</td>
<td>自- E-B2</td>
<td>自- E-B3</td>
</tr>
<tr>
<td>自- E-C1</td>
<td>自- E-C2</td>
<td>自- E-C3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>溝通互動</th>
<th>溝通互動</th>
<th>溝通互動</th>
</tr>
</thead>
<tbody>
<tr>
<td>自- E-A1</td>
<td>自- E-A2</td>
<td>自- E-A3</td>
</tr>
<tr>
<td>自- E-B1</td>
<td>自- E-B2</td>
<td>自- E-B3</td>
</tr>
<tr>
<td>自- E-C1</td>
<td>自- E-C2</td>
<td>自- E-C3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>社會參與</th>
<th>社會參與</th>
<th>社會參與</th>
</tr>
</thead>
<tbody>
<tr>
<td>自- E-A1</td>
<td>自- E-A2</td>
<td>自- E-A3</td>
</tr>
<tr>
<td>自- E-B1</td>
<td>自- E-B2</td>
<td>自- E-B3</td>
</tr>
<tr>
<td>自- E-C1</td>
<td>自- E-C2</td>
<td>自- E-C3</td>
</tr>
</tbody>
</table>
自然科學領域課程綱要 國民中學教育階段 學習表現

<table>
<thead>
<tr>
<th>總綱核心素養面向</th>
<th>思考智能</th>
<th>問題解決</th>
<th>科學的態度與本質</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然科學領域核心素養項目</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>想像創造</td>
<td>推理論證</td>
<td>培養科學探究的興趣</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>傳達思考與探究的習慣</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>養成應用科學思考與探究的習慣</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>認識科學本質</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學受社會規範</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學知識時性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學工作者的素質</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學受社會規範</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學知識時性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學工作者的素質</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學受社會規範</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學知識時性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>科學工作者的素質</td>
</tr>
</tbody>
</table>

	素養項目	思考智能	問題解決	科學的態度與本質

<p>| A 自主行動 | 自-J-A1 | ✓ | ✓ | ✓ |
| | 自-J-A2 | ✓ | ✓ | ✓ | ✓ | | |
| | 自-J-A3 | ✓ | ✓ | ✓ |
| B 溝通互動 | 自-J-B1 | ✓ | ✓ | ✓ | ✓ | ✓ |
| | 自-J-B2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| | 自-J-B3 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| C 社會參與 | 自-J-C1 | ✓ | ✓ | ✓ |
| | 自-J-C2 | ✓ | ✓ | ✓ | ✓ |
| | 自-J-C3 | ✓ | ✓ | ✓ | ✓ |</p>
<table>
<thead>
<tr>
<th>自然科學領域核心素養項目</th>
<th>思考智能</th>
<th>問題解決</th>
<th>科學的態度與本質</th>
</tr>
</thead>
<tbody>
<tr>
<td>想像創造</td>
<td>推理論辯</td>
<td>建立模型</td>
<td>計劃與執行</td>
</tr>
<tr>
<td>主動察覺</td>
<td>抽象思維</td>
<td>認知經驗</td>
<td>有計劃、有條理</td>
</tr>
<tr>
<td>主動接近</td>
<td>追求真理</td>
<td>設計模型</td>
<td>預測結果</td>
</tr>
<tr>
<td>主動接受</td>
<td>理解概念</td>
<td>建立實驗</td>
<td>逐一結果</td>
</tr>
<tr>
<td>主動思考</td>
<td>推理論辯</td>
<td>建立模型</td>
<td>計劃與執行</td>
</tr>
<tr>
<td>主動判斷</td>
<td>建立模型</td>
<td>建立模型</td>
<td>計劃與執行</td>
</tr>
<tr>
<td>主動設計</td>
<td>推理論辯</td>
<td>建立模型</td>
<td>計劃與執行</td>
</tr>
<tr>
<td>主動解決</td>
<td>討論與傳達</td>
<td>培養科學探究的興趣</td>
<td>培養思考與探索的習慣</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>自主行動</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>溝通互動</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>社會參與</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>
附錄四：學習內容說明

一、國民小學教育階段（第二學習階段、第三學習階段）

<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段</th>
<th>第三學習階段</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質與能量（INa）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INa-Ⅱ-1</td>
<td>自然界（包含生物與非生物）是由不同物質所組成。</td>
<td>INa-Ⅲ-1</td>
<td>物質是由微小的粒子所組成，而且粒子不斷的運動。</td>
</tr>
<tr>
<td></td>
<td>1-1 自然界的生物包含許多不同類群，本階段以身邊常見生物为例，例如：植物、昆蟲、動物、水中生物等。</td>
<td></td>
<td>1-1 可觀察實作並討論日常生活中水的蒸發現象，並可透過模型或動畫引導理解物質是由肉眼看不見的小粒子組成。</td>
</tr>
<tr>
<td></td>
<td>1-2 可透過觀察自然環境中不同物體，例如：岩石、水、土壤與空氣等，分享經驗發現自然界是由不同物質所組成。</td>
<td></td>
<td>1-2 可透過模型或動畫模擬，了解粒子會不斷的運動。水的三態變化也可以用粒子運動的模型來理解和解釋。</td>
</tr>
<tr>
<td></td>
<td>1-3 不涉及原子的概念。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INa-Ⅱ-2</td>
<td>在地球上，物質具有重量，佔有體積。</td>
<td>INa-Ⅲ-2</td>
<td>物質各有不同的性質，有些性質會隨溫度而改變。</td>
</tr>
<tr>
<td></td>
<td>2-1 可透過觀察並感受生活中常見的物質具有重量、佔有空間。</td>
<td></td>
<td>2-1 可對不同物質分析其各種屬性，依據結果，自訂分類標準並將物質分類，並歸納出分類的原則與結果。</td>
</tr>
<tr>
<td></td>
<td>2-2 可結合熱的傳導實驗觀察奶油的融化、水的三態變化等現象。</td>
<td></td>
<td>2-2 可透過教學或活動，了解生活中常見物</td>
</tr>
<tr>
<td></td>
<td>2-3 可透過教學或活動，了解生活中常見物</td>
<td></td>
<td>注意確 保 衛 生 與 安全</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>INa-Ⅱ-3</td>
<td>物質各有其特性，並可以依其特性與用途進行分類。</td>
<td>3-1</td>
<td>可藉由觀察物質而察覺不同的物質具有的外在特徵或特性，例如：顏色、形狀、磁性、軟硬、氣味、粗細等。</td>
</tr>
<tr>
<td>3-2</td>
<td>可透過實驗知道不同物質在某一種性質上的差異，例如：磁性、導電性、水溶性、延展性等。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>可依目的，例如：可回收、不可回收等或屬性，例如：溶於水、不溶於水等不同，將</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INa-Ⅲ-3</td>
<td>混合物是由不同的物質所混合，物質混合前後重量不會改變，性質可能會改變。</td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td>3-2</td>
<td>操作廚房常用品，例如：醋、汽水、小蘇打粉等的混合，進行客觀的質性觀察或數值量測並詳實記錄，證明物質混合前後重量不會改變，但性質可能會改變，例如：水溶液的酸鹼度</td>
<td></td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-5</td>
</tr>
</tbody>
</table>

備註：

- 學習內容說明：
 - 2-4：可透過教學或活動了解物質溶於水的程度會因溫度不同而改變。
 - 2-5：物質性質可以導電性、導熱性、酸鹼度、溶解性質、可燃不可燃等為例，性質隨溫度改變可以膨脹、溶解等為例。
跨科概念

<table>
<thead>
<tr>
<th>学習内容</th>
<th>学習内容說明</th>
<th>学習内容</th>
<th>学習内容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Na-Ⅱ-4 物質的形態</td>
<td>多種物質有不同的分類。</td>
<td>I Na-Ⅲ-4 空氣</td>
<td>空氣由各種不同氣體所組成，空氣具有熱脹冷縮的性質，氣體無一定的形狀與體積。</td>
<td>第三學習階段</td>
</tr>
<tr>
<td>可藉由操作及觀察不同物質，例如：糖、巧克力、蠟塊、水等，在受熱及冷卻的條件下，物質形態上的變化。</td>
<td>4-1</td>
<td>可透過各種具有能量形態轉換的活動，例如：摩擦生熱、手搖發電機等，體會能量的形態可以轉換。</td>
<td>5-1</td>
<td>可透過各種具有能量形態轉換的活動，例如：摩擦生熱、手搖發電機等，體會能量形態可以轉換。</td>
</tr>
<tr>
<td>可實驗觀察水在不同溫度時的形態變化，並了解生活中的實例。</td>
<td>4-2</td>
<td>可透過觀看影片，例如：乒乓球、氣球、車胎、密閉空氣上的水柱等或實驗不同溫度下，例如：氣球、針筒等體積的改變，了解氣體具有熱脹冷縮的性質。</td>
<td>4-3</td>
<td></td>
</tr>
<tr>
<td>I Na-Ⅱ-5 太陽照射、物質燃燒和摩擦等可以升溫</td>
<td>可透過教學或活動認識使溫度升高的方法，例如：火、電、微波可以加熱食物或物品，日照可使溫度升高；摩擦可生熱升溫；有些物質變化也會產生熱以達到升溫，例如：暖暖包利用鐵粉生鏽發熱。僅觀察現象。</td>
<td>I Na-Ⅲ-5 不同形式的能量可以相互轉換，但總量不變。</td>
<td>第三學習階段</td>
<td></td>
</tr>
<tr>
<td>可實作學習常見溫度</td>
<td>5-2</td>
<td>可透過活動或資料收集研讀，認識能量的形態可以轉換，但總量不變，例如：陽光發電廠為利用太陽能，火力發電廠為利用煤和石油產生熱能轉換成電能。</td>
<td>第三學習階段</td>
<td>第三學習階段</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>學習內容</th>
<th>学習內容說明</th>
<th>学習內容</th>
<th>学習内容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>第二學習階段</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
跨科概念

<table>
<thead>
<tr>
<th>学习内容</th>
<th>学习内容说明</th>
<th>学习内容</th>
<th>学习内容说明</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>第二学习阶段</td>
<td></td>
<td>第三学习阶段</td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>太陽是地球能量的主要来源，提供生物的生长需要，能量可以各种形式呈现。</td>
<td>Na-Ⅱ-6</td>
<td>能量可藉由电流传递、转换而後为人类所应用。利用电池等设备可以储存电能再转换成其他能量。</td>
<td>可以家中电器举例说明，例如：电燈可将电能转为光能；烤箱可将电能转为热能；洗衣机可将电能转为动能等。</td>
</tr>
<tr>
<td>I Na-Ⅱ-6</td>
<td>可從生活及環境中進行觀察，發現不同的能量形式，例如：热、电、磁、光、风、食物等，以及这些能量的来源，例如：煤、天然氣、酒精、石油、核能、水力与太陽能等。日常生活中常用的能源包括：太阳能、电能、风能、核能和燃料等。</td>
<td>6-1</td>
<td>Na-Ⅲ-6</td>
<td>可透过探究活動或影片了解同一物體移动越快，拥有的能量越多。例如：高速的汽車撞擊後，毁損程度比低速車嚴重。</td>
</tr>
<tr>
<td>生物需要能量(養分)、陽光、空氣、水和土壤，維持生命、生長與活動。</td>
<td>6-2</td>
<td>6-2</td>
<td>可介绍電池是藉由化学反应而儲存電能，再藉由電流傳遞转化成其他形式的能量，例如: 手電筒、手機等。</td>
<td></td>
</tr>
<tr>
<td>I Na-Ⅱ-7</td>
<td>可以人體為例，了解人類與其他動物皆需要攝取食物以維持活動所需的能量。可透過飼養小生物、種植植物或觀察人在幼兒時期的生長情形，了解生物需要獲得養分而成長。可透過活動知道太陽的光和熱能帶給地球光明及溫暖。</td>
<td>7-1</td>
<td>Na-Ⅲ-7</td>
<td>可透過探究活動或影片了解同一物體移动越快，拥有的能量越多。例如：高速的汽車撞擊後，毁損程度比低速車嚴重。</td>
</tr>
<tr>
<td></td>
<td>7-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>第三學習階段</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>7-4</td>
<td>植物生長。</td>
<td>植物生長需要許多條件，透過種植植物，例如：蔬菜，觀察植物生長需要陽光、空氣、水、土壤。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-5</td>
<td>動物生長需要合適的環境(陽光、空氣、水)及食物。以飼養昆蟲及小動物來觀察動物生長的情形。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INa-Ⅱ-8</td>
<td>日常生活中常用的能源。</td>
<td>8-1 包括：太陽能、電能、風能、核能和燃料等。</td>
<td>可以實際操作或影片的觀察了解日常生活中器具(例如：電器、車輛、瓦斯爐等)的功能與所使用的能源。</td>
<td></td>
</tr>
<tr>
<td>8-2</td>
<td>可以實際操作或影片的觀察了解日常生活中器具(例如：電器、車輛、瓦斯爐等)的功能與所使用的能源。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INa-Ⅲ-8</td>
<td>熱由高溫處傳往低溫處傳播，傳播的方式有傳導、對流和輻射，生活中可運用不同的方法保溫與散熱。</td>
<td>8-1 可透過實驗了解熱的傳遞方向是由高溫傳向低溫。例如：觀察鋁箔紙上的蠟塊、鍋子上的奶油，受熱後的融化情形等;或由生活經驗中觀察熱的傳導方向;例如：熱湯的熱傳向鐵湯匙、再傳向手;手的熱傳向冰塊，使冰塊融化。</td>
<td></td>
<td>8-2 可透過探究活動了解熱會有傳導、對流和輻射三種不同的傳播方式。</td>
</tr>
<tr>
<td>8-3</td>
<td>可透過探究活動了</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-4</td>
<td>解不同物質的熱傳導效果不同。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-5</td>
<td>可藉由實驗觀察水或空氣的對流現象。例如：熱空氣上升、冷空氣下降;或熱水上升、冷水下降的對流方式。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-6</td>
<td>可透過探究活動，了解熱可以不須介質就能以輻射的方式傳播。不同顏色或材質的物質具有不同吸熱效果。</td>
</tr>
<tr>
<td>INa-Ⅲ-9</td>
<td>植物生長所需的養分是紮由光合作用從太陽光獲得。</td>
<td>9-1</td>
<td>葉子是植物行光合作用主要的構造，不涉及葉綠體。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-2</td>
<td>可透過植物生長實驗，比較有無陽光對植物生長的影響;亦可進行植物葉片光合作用實驗，檢測植物葉片澱粉含量，了解植物生長所需的養分是經由光合作</td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>用從太陽光獲得的，不涉及光合作用的反應式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INa-Ⅲ-10 在生態系中，能量經由食物鏈在不同物種間流動與循環。</td>
<td>10-1 綠色植物行光合作用自行製造養分，在生物體系中扮演生產者角色；以生產者為食物的動物，為一級消費者；以一級消費者為食物的動物，為二級消費者；生物死亡後經分解者分解回到土壤中。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-2 食物鏈是生物間食物的關係，在生態系中，代表了物質和能量在不同物種間流動與循環的情形。</td>
<td></td>
</tr>
<tr>
<td>构造與功能（INb）</td>
<td>INb-Ⅱ-1 物質或物體各有不同的功能或用途。</td>
<td>1-1 觀察不同材料，例如：木材、塑膠、鋼鐵等在日常生活中的用途。</td>
<td>1-1 物質或物品各有不同的結構，結構不同，功能和用途也可能不同。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2 利用電池、電線、燈泡、小馬達，空氣或水的流動等設計、製作各種玩具。</td>
<td>1-2 可以生活中常見用品為例，例如：塑膠與鐵有不同的結構與性質，所以鍋子的把手常用塑膠以絕熱，鍋體則常用鐵以</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>保持鍋體的傳熱性。</td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
</tr>
<tr>
<td>INb-Ⅱ-2</td>
<td>物質性質上的差異性可用來分區或分離物質。</td>
<td>2-1</td>
<td>利用磁性與水溶性等來分離沙、鹽、鐵粉。</td>
<td>INb-Ⅲ-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-2</td>
<td>可利用氣體助燃性的不同，鑑別氧氣與二氧化碳。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-3</td>
<td>可利用操作澄清石灰水的活動，鑑別二氧化碳。</td>
<td></td>
</tr>
<tr>
<td>INb-Ⅱ-3</td>
<td>虹吸現象可用水將容器中的水吸出；連通管可測水平。</td>
<td>3-1</td>
<td>可透過實作活動，知道利用虹吸現象能讓水自動從水管流出來，例如：可以用來為魚缸換水。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-2</td>
<td>可透過操作水管的試驗活動，認識連通管的原理，可以用來測水平。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-3</td>
<td>認識生活中虹吸與連通管的應用。</td>
<td></td>
</tr>
<tr>
<td>INb-Ⅱ-4</td>
<td>生物體的構造與功能是互相配合的。</td>
<td>4-1</td>
<td>可以校園及社區常見動物為觀察對象，比較其外形和特徵上的差異。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-2</td>
<td>以常見動物為例，可以區分為哺乳類、兩</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>力可藉由簡單機械傳遞。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>可透過操作生活中的工具，認識槓桿工具的施力點、抗力點、支點，施力臂及抗力臂，並能判斷其能帶來的便利性(省</td>
<td></td>
</tr>
</tbody>
</table>

98
<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段</th>
<th>第三學習階段</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td>棲類、魚類、爬蟲類等，各類動物有不同的形態特徵。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>以常見植物為例，可以莖的特徵區分為木本植物、草本植物及藤本植物。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-2</td>
<td>力或省時。例如：操作開瓶器、拔釘器、用竹竿撬起重物、長鐵夾夾落葉、旗桿上的滑輪等。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>可由實驗發現齒輪、鏈條、流體可以傳送動力；並觀察生活中的應用，例如：腳踏車、輸送帶等。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td>可由影片或動畫了解生活中的工具之內部結構，例如：電梯、手扶梯、纜車、油壓升降梯等。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-4</td>
<td>可透過工具的發展與演進的科學史，了解簡單機械所帶來的便利性。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INb-Ⅱ-5</td>
<td>常見動物的外部形態主要分為頭、軀幹和肢，但不同類別動物之各部位特徵和名稱有差異。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>藉由觀察各種常見動物，歸納出常見動物的外部形態主要分為有頭、軀幹、肢。昆蟲的身體分為頭、胸、腹和附肢。魚類的外型主要分為頭、軀幹和鰭。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td>生物體是由細胞所組成，具有由細胞、器官到個體等不同層次的構造。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-2</td>
<td>可用顯微鏡或放大設備觀察生物體的細胞，但不涉及細胞內的構造。可自製洋蔥表皮細胞標本片或使用其他現成標本片觀察。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-3</td>
<td>以魚為例認識各種器官，例如：用鰓呼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>INb-Ⅱ-6</td>
<td>常見植物的外部形態主要是由根、莖、葉、花、果實及種子所組成。</td>
<td>6-1</td>
<td>透過實際觀察,認識植物的外部形態，須涵蓋以下的內容：根分為軸根、鬚根；莖有草本莖、木本莖、藤本莖；葉的特徵可從葉緣、葉脈、葉序等分辨；花可分為花萼、花瓣、雄蕊、雌蕊等部位；植物開花後結果,果實內有種子。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INb-Ⅲ-6</td>
<td>動物的形態特徵與行為相關，動物身體的構造不同，有不同的運動方式。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-4</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>INb-Ⅱ-7</td>
<td>動植物體的外部形態和內部構造，與其生長、行為、繁殖後代和適應環境有關。</td>
<td>7-1</td>
<td>藉由不同的動物及比較其不同的外部形態和內部構造，發現其生長、行為、繁殖後代和適應環境有關。例如：植物的葉生長方式和爭取陽光的照</td>
</tr>
<tr>
<td>INb-Ⅲ-7</td>
<td>植物各部位的構造和所具有的功能有關，有些植物產生特化的構造以適應環境。</td>
<td>7-1</td>
<td>植物各部位構造具有其主要功能：根負責吸收養分及水分；固定植物體；莖負責輸送水分養分；支持植物體；葉負責製造養分；蒸散水分；花、果實和種子負責繁</td>
</tr>
<tr>
<td>6-3</td>
<td>蝴蝶幼蟲與成蟲的口器不同其進食方式也不同。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-4</td>
<td>動物身體的外型、顏色、花紋等，能形成保護色、警戒色、擬態、偽裝等效果，對生存的方式有影響。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-5</td>
<td>觀察不同動物的運動構造，了解其不同的運動方式。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-6</td>
<td>至少觀察一種動物骨骼和肌肉運作的情形，以雞翅為例。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td>不同的運動方式與身體構造之關係如下：有四肢—行走、跑；後肢粗大—跳躍；有鱗、蹼—游泳；有翅膀—飛行。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>7-2</td>
<td>射有關、動物的保護色或擬態與生存繁衍有關。</td>
<td>7-2</td>
<td>以蕨類植物為例，主要構造以營養葉行光合作用製造養分；以孢子葉產生孢子繁殖下一代。</td>
</tr>
<tr>
<td>7-3</td>
<td>以水生植物為例，挺水性、浮葉性、漂浮性及沉水性等植物各有其適應環境的特徵。</td>
<td>7-3</td>
<td>以植物體特化的構造來說明其為適應環境所具有的功能，例如：塊根和球莖為儲存養分、食蟲植物的葉為捕食、植物捲鬚為攀爬；花的形態與授粉昆蟲口器相關。</td>
</tr>
<tr>
<td>7-4</td>
<td>陸生動物與水生動物呼吸構造不同以適應環境。</td>
<td>7-4</td>
<td>果實與種子不同的外形與傳播方式相關，例如：大花咸豐草靠動物攜帶、銀葉樹靠水力、青楓靠風力、不靠外力的酢漿草等。</td>
</tr>
<tr>
<td>INb-Ⅲ-8</td>
<td>生物可依其形態特徵進行分類。</td>
<td>8-1</td>
<td>生物的外形特徵可用於辨識其類別。 可利用簡單的二分法，將生物依其特徵加以區別和歸類。</td>
</tr>
<tr>
<td>8-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>学习内容</td>
<td>学习内容说明</td>
<td>学习内容</td>
<td>学习内容说明</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>系统与尺度 (INc)</td>
<td>使用工具或自订参考标准可量度与比较。</td>
<td>1-1</td>
<td>能以合理的参考标准或工具代替实际的数值，例如：测量磁力的强度时，能以吸起迴纹针的数量作比较度量；测量风力大小时，能以风车转动的快慢、旗子飘扬的高度订定比较的标准。</td>
</tr>
<tr>
<td>INc-Ⅱ-1</td>
<td></td>
<td>1-2</td>
<td>可透过活动体验距离的远近、重量的大小等。例如：体验一公里的距离有多远、一公斤的物品有多重等。</td>
</tr>
<tr>
<td>INc-Ⅱ-2</td>
<td>生活中常见的测量单位与度量。</td>
<td>2-1</td>
<td>如长度、重量、时间、温度等。能用数字与单位表示测量的结果，例如：水温是20度或20℃，食盐的重量为10克重等。(仅限生活中常见的尺度与单位，不强调计算与单位换算)。</td>
</tr>
<tr>
<td></td>
<td>2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Nc-Ⅱ-3</td>
<td>力的表示法，包括大小、方向與作用點等。</td>
<td>3-1</td>
<td>可透過生活中的動作來分析施力的情形，認識力的表示法。例如：開門時，用力的方向為向內拉、施力於門把而非門軸上，引導出力的表示法。</td>
</tr>
<tr>
<td>2-4</td>
<td>可以光速為例，目前已知速度最快者為真空中的光速，其一秒可繞行地球7.5圈。</td>
<td>2-5</td>
<td>可透過閱讀或教學活動知道生活中常見的最大、最小尺度單位。例如：奈米、光年等。</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>INc-Ⅱ-4</td>
<td>方向、距離可</td>
<td>INc-Ⅲ-4</td>
<td>透過活動判斷實驗不合理的數據。實驗的結果必須是多次合理數據的平均值。</td>
</tr>
<tr>
<td>學習內容</td>
<td>用來表示物體位置。</td>
<td>對相同事物做多次測量，其結果間可能存在差異，差異越大表示測量越不精確。</td>
<td></td>
</tr>
<tr>
<td>學習內容說明</td>
<td>透過活動知道用坐標、距離、方向等資料可以表示物體位置。例如：圖書館在校門西南方約200公尺的位置。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INc-Ⅱ-5</td>
<td>水和空氣可以傳遞動力讓物體移動。</td>
<td>INc-Ⅲ-5</td>
<td>可透過活動了解能由物體的形變量或運動狀態得知其受力的大小。</td>
</tr>
<tr>
<td>學習內容</td>
<td>透過活動知道空氣可壓縮、水不可壓縮。可透過水槍、吹管實驗發現水和空氣可以傳力使物體移動。</td>
<td>力的大小可由物體的形變或運動狀態的改變程度得知。</td>
<td></td>
</tr>
<tr>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INc-Ⅱ-6</td>
<td>水有三態變化及毛細現象。</td>
<td>INc-Ⅲ-6</td>
<td>可透過活動會的賽跑及趣味競賽等資料來認識快慢及速度的表示方法。例如：固定時間，比較距離的遠近；或是固定距離，比較時間的長短。配合數學速率單元學習計算方式（不刻意區分速度與速率）。</td>
</tr>
<tr>
<td>學習內容</td>
<td>透過活動觀察水的蒸發、凝結、溶化及凝固現象，並了解溫度的高低會造成水的三態變化。</td>
<td>運用時間與距離可描述物體的速度與速度的變化。</td>
<td></td>
</tr>
<tr>
<td>學習內容說明</td>
<td>可透過使用不同材質的紙條、布條進行實驗，察覺水能沿著細縫往上或往各方向移動，認識生活中的毛細現象實例。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>INc-Ⅱ-7 利用適當的工具觀察不同大小、距離位置的物體。</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
</tr>
<tr>
<td>7-1</td>
<td>可用放大鏡觀察植物的葉脈、雌蕊與雄蕊、昆蟲的觸角。</td>
<td>INc-Ⅲ-7 動物體內的器官系統是由數個器官共同組合，以執行某種特定的生理作用。</td>
<td>7-1</td>
</tr>
<tr>
<td>7-2</td>
<td>可用望遠鏡觀察鳥類、樹梢上的花果、溪流生態。</td>
<td>8-1</td>
<td>透過比較陸域及水域環境，發現不同環境會有不同的生物生存。</td>
</tr>
<tr>
<td>7-3</td>
<td>可用天文望遠鏡來觀察天體。</td>
<td>8-2</td>
<td>不同的水域環境，例如：溪流、湖泊、池塘、潮間帶、水田等，有不同的水生生物生存。</td>
</tr>
<tr>
<td>8-1</td>
<td>透過比較陸域及水域環境，發現不同環境會有不同的生物生存。</td>
<td>INc-Ⅲ-8 在同一時期，特定區域上，相同物種所組成的群體稱為「族群」，而在特定區域由多個族群結合而組成「群集」。</td>
<td>8-1</td>
</tr>
<tr>
<td>8-2</td>
<td>不同的水域環境，例如：溪流、湖泊、池塘、潮間帶、水田等，有不同的水生生物生存。</td>
<td>8-2</td>
<td>觀察相同區域內，多個族群結合而成的「群集」。</td>
</tr>
<tr>
<td>8-3</td>
<td>不同的陸域環境，例如：森林、灌叢、草地等，有不同的生物生存。</td>
<td>8-3</td>
<td>記錄校園常見的動物和植物族群。</td>
</tr>
<tr>
<td>8-4</td>
<td></td>
<td>8-4</td>
<td>記錄校園或社區某區域範圍的動物和植物族群，認識群集的組成，例如：草地群集有大花咸豐草、兔兒菜、牛筋草、紫花酢漿草、螞蟻、蟋蟀、蚯蚓、蝗蟲等族群。</td>
</tr>
<tr>
<td>INc-Ⅱ-8 不同的環境有不同的生物生存。</td>
<td>9-1</td>
<td>可透過觀察岩石、砂、土壤等特徵及與日常生活的關係。</td>
<td>INc-Ⅲ-9 不同的環境條件影響生物的種類和</td>
</tr>
<tr>
<td>INc-Ⅱ-9 地表具有岩石、砂、土壤等不同環境，</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>學習內容</th>
<th>學習內容說明</th>
<th>學習內容</th>
<th>學習內容說明</th>
</tr>
</thead>
</table>

INc-Ⅱ-10 空中天體

- **10-1** 觀察天空中天體每日東升西落的現象。
- **10-2** 觀察月亮，了解月亮會東升西落以及盈虧變化，及月相變化(不涉及月相變化的原因)。
- **10-3** 在觀察中能察覺夜空中星星有亮有暗，這是因爲各個星星本身亮度或與我們的距離遠近不同所致。
- **10-4** 觀察太陽，察覺太陽亦有東升西落的變化，但不可用肉眼直視觀測太陽。

INc-Ⅲ-10 地球是由空氣、陸地、海洋所組成的。

- **10-1** 觀察天空中天體每日東升西落的現象。
- **10-2** 觀察月亮，了解月亮會東升西落以及盈虧變化，及月相變化(不涉及月相變化的原因)。
- **10-3** 在觀察中能察覺夜空中星星有亮有暗，這是因爲各個星星本身亮度或與我們的距離遠近不同所致。
- **10-4** 觀察太陽，察覺太陽亦有東升西落的變化，但不可用肉眼直視觀測太陽。

INc-Ⅲ-11 岩石由礦物組成。

- **11-1** 利用觀察來發現岩石是由不同礦物組成，岩石與礦物有不同特徵，且因其特性有不同用途。

INc-Ⅲ-12 地球上的水存在於大氣、海洋、湖泊與地下中。

- **12-1** 地球上的水存在於大氣、海洋、湖泊與地下中。海水(鹹水)
<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段</th>
<th>第三學習階段</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

改變與穩定（INd）

<table>
<thead>
<tr>
<th>學習內容</th>
<th>學習內容說明</th>
</tr>
</thead>
<tbody>
<tr>
<td>INd-III-1</td>
<td>可透過操作氣球或針筒,了解增減外力會改變原來穩定狀態。</td>
</tr>
<tr>
<td>INd-III-1</td>
<td>可透過蠟燭燃燒的實驗說明大氣是由可助燃與不助燃的</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>回復，有些則不能。</td>
<td></td>
</tr>
<tr>
<td>INd-Ⅱ-2</td>
<td>物質或自然現象的改變情形，可以運用測量的工具和方法得知。</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>學习内容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>INd-Ⅱ-3</td>
<td>生物從出生, Repos</td>
</tr>
</tbody>
</table>
| INd-Ⅱ-3 | 3-2 | 種植蔬菜, 觀察植物成長, 開花到結果的歷程。 | INd-Ⅲ-3 | 地球上的物體 (含生物和非生物) 均會受地球引力的作用, 地球對物體的引力就是物體的重量。
| INd-Ⅱ-4 | 空氣流動產 生風。 | 4-1 | 透過操作了解空氣流動就形成風。 |
| INd-Ⅱ-5 | 自然環境中有砂石及土壤，會因水 | 5-1 | 可利用校園環境的觀察, 了解自然環境中有砂石及土壤。 |
| INd-Ⅲ-4 | 生物個體間的性狀具有差異性; 子代與親代的性狀具有相似 | 4-1 | 以人為例, 觀察自己與父母和祖父母外型相似性 (眼皮、耳朵)、 拇指、捲舌、美人尖, 不涉及血 |

備註：
2-5 可從近期氣候變遷相關新聞報導中, 知道氣候變遷可能相關的因素。
<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段</th>
<th>第三學習階段</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>性和相異性。</td>
</tr>
<tr>
<td></td>
<td>流、風而發生改變。</td>
<td>5-2 可利用實驗，觀察水及風對土壤或砂石所產生的改變。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-3 透過自然景觀的觀察，認識水流和風會使自然環境中的砂石及土壤產生改變。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>一年四季氣溫會有所變化，天氣也會有所不同。氣象報告可以讓我們知道天氣的可能變化。</td>
<td>6-1 利用生活經驗說明一年當中不同時節的氣溫會有所不同，例如：夏天熱、冬天冷。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-2 透過四季天氣特徵的說明，了解四季天氣的差異，例如：夏天有颱風，冬天有寒流等。</td>
<td>6-3 知道如何得知天氣預報狀況。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-4 知道天氣預報的用途與內容。</td>
<td>6-5 知道天氣預報的種類。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>一年四季氣候</td>
<td>7-1 可透過程度計、雨量筒、風向風速儀等實際操作來記錄天氣的資訊。</td>
<td>INd-Ⅲ-5 生物體接受環境刺激會產生適當的反應，並自動調節生理作</td>
</tr>
<tr>
<td></td>
<td>及時事</td>
<td>7-2 了解每天氣象局的</td>
<td>5-2 含羞草受外力碰觸會立即閉合。</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>氣象報告，觀察雨量、溫度、風向、風速等資料所代表的意義，並上氣象局網站查詢過去及未來天氣預測的訊息。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INd-Ⅱ-8</td>
<td>力有各種不同的形式。</td>
<td>8-1</td>
<td>可透過體驗或實驗活動，了解力有各種不同的形式，例如：磁力、彈力、壓力、浮力等。</td>
</tr>
<tr>
<td>INd-Ⅱ-9</td>
<td>施力可能會使物體改變運動情形或形狀。當物體受力變形時，有的可恢復</td>
<td>9-1</td>
<td>可由生活經驗察覺物體受力後，有些則會改變運動的情形，例如：踢球、射飛盤等，有些會改變形狀，例如：黏土、鋁</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>原狀，有的不能恢復原狀。</td>
<td>符包、皮球等。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>可由生活經驗觀察受力變形的物體，有的可恢復原狀，有的不能恢復原狀。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INd-Ⅲ-8</td>
<td>土壤是由岩石風化的碎屑及生物遺骸所組成。化石是地層中古代生物的遺骸。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-2</td>
<td>利用圖片或教具介紹，認識化石並知道化石是古代生物的遺骸。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INd-Ⅲ-9</td>
<td>流水、風和波浪對砂石和土壤產生破壞和生物活動，對地表的改變會產生不同的影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-1</td>
<td>利用自然景觀之介紹，了解風和波浪也會搬運及堆積砂石和土壤。可舉例不同種風化、侵蝕、搬運、堆積、生物活動所造成的地表，並了解其不同。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INd-Ⅲ-11</td>
<td>海水的流動會影響天氣</td>
</tr>
</tbody>
</table>

113
<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段</th>
<th>第三學習階段</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>與氣候的變化。氣溫下降時水氣凝結為雲和霧或昇華為霜、雪。</td>
<td>11-2</td>
<td>影響天氣變化。從實驗觀察了解溫度下降時會發生水氣凝結或昇華等現象。</td>
<td></td>
</tr>
<tr>
<td>INd-III-12</td>
<td>自然界的水循環主要由海洋或湖泊表面水的蒸發，經凝結降水，再透過地形表水與地下水等傳送回海洋或湖泊。</td>
<td>12-1</td>
<td>可利用探究活動來了解水循環。</td>
</tr>
<tr>
<td>INd-III-13</td>
<td>施力可使物體的運動速度改變，物體受多個力的作用，仍可保持平衡靜止不動，物體不接觸也可有有力的作用。</td>
<td>13-1</td>
<td>透過實驗了解力的大小會影響物體運動的快慢。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13-2</td>
<td>可透過實驗或玩平衡桌上物品的活動，發現物體受多個力作用後，受力平衡時，能保持靜止。受力不平衡時，會產生運動。並了解受兩力作用而靜止時，兩作用力的大小相同、方向相反。運動時，是</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>交互作用（INe）</td>
<td>INe-Ⅱ-1 自然界的物體、生物、環境間常會相互影響。</td>
<td>1-1 可以觀察蚯蚓為例, 察覺土壤光及水分的變化會影響生物的生存。</td>
<td>1-1 自然界的物體、生物與環境間的交互作用, 常具有規律性。</td>
</tr>
<tr>
<td></td>
<td>1-2 可借由觀察物體之間,例如: 磁鐵與磁鐵等或物體與環境,例如: 鐵製品的生鏽、垃圾和環境汙染等。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INe-Ⅱ-2 溫度會影響物質在水中溶解的程度</td>
<td>2-1 可藉由實際操作物質在不同溫度之溶解情形與程度，發現</td>
<td>INe-Ⅲ-2 物質的形態與性質可因燃燒、生鏽、</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
</tr>
<tr>
<td>定性及物質燃燒、生鏽、發酵等現象。</td>
<td>溫度會影響物質在水中溶解的程度。可藉由觀察或實作了解溫度會影響物質燃燒、生鏽、發酵，例如：牛奶酸敗等現象。</td>
<td>發酵、酸鹼作用等而改變或形成新物質，這些改變有些會和溫度、水、空氣、光等有關。改變要能發生，常需要具備一些條件。</td>
<td>2-2</td>
</tr>
<tr>
<td>有些物質溶於水中，有些物質不容易溶於水中。</td>
<td>觀察生活中常見的物質，例如：糖、咖啡粉、沙子等，在水中的溶解度不同。</td>
<td>燃燒是物質與氧劇烈作用的現象，燃燒必須同時具備可燃物、助燃物，並達到燃點等三個要素。</td>
<td>3-1</td>
</tr>
<tr>
<td>常見食物的酸鹼性有時可利用氣味、觸覺、味覺簡單區分，花卉、菜葉會因接觸到酸鹼而變色，進而認識物質溶解、反應前後總重量不變。</td>
<td>可利用嗅覺、觸覺、味覺簡單區分常見食物，例如：常見調味料的酸鹼性。</td>
<td>物質溶解、反應前後總重量不變。</td>
<td>4-1</td>
</tr>
</tbody>
</table>

| 1Ne-Ⅱ-3 | 2-2 | 3-1 | 4-1 | 4-2 |

| 1Ne-Ⅱ-4 | 3-2 | 4-2 |

可操作天平或磅秤，驗證物質溶解前後重量不變，例如：以鹽或糖為例，測量溶

116
<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段</th>
<th>第三學習階段</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
</tr>
<tr>
<td></td>
<td>5-1</td>
<td>可藉由手的觸摸、觀察鼓面豆子的跳動、弦的振動等活動，察覺物體振動會產生聲音，而振動的強弱會影響音量的大小。</td>
<td>5-1</td>
</tr>
<tr>
<td>INe-Ⅱ-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生活周遭有各種的聲音；物體振動會產生聲音，聲音可以透過固體、液體、氣體傳播。不同的動物會發出不同的聲音，並且作為溝通的方式。</td>
<td>5-2</td>
<td>可藉由實驗或生活經驗，了解聲音可以透過固體、液體、氣體中傳播。例如：傳聲筒中棉綿可傳聲，泳池中的水可傳聲、平等說話時空氣傳聲等，也可透過影片知道真空中無法傳聲。</td>
<td>5-2</td>
</tr>
<tr>
<td></td>
<td>5-3</td>
<td></td>
<td>5-3</td>
</tr>
<tr>
<td></td>
<td>5-4</td>
<td></td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>5-5</td>
<td></td>
<td>5-5</td>
</tr>
<tr>
<td></td>
<td>5-6</td>
<td></td>
<td>5-6</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INe-Ⅱ-6</td>
<td>光線以直線前進,反射時有一定的方向。</td>
<td>6-1 可藉由影子,針孔成像,雷射筆等觀察,了解光是直線前進。</td>
<td>INe-Ⅲ-6</td>
</tr>
<tr>
<td></td>
<td>6-2 透過探究活動發現能夠反光物品的鏡面特徵,及鏡面的角度會影響光的反射方向</td>
<td></td>
<td>6-1 能認識測量音量的工具,了解主觀和客觀的噪音的定義。</td>
</tr>
<tr>
<td>INe-Ⅱ-7</td>
<td>磁鐵具有兩極,同極相斥,異極相吸;磁鐵會吸引含鐵的物質</td>
<td>7-1 可透過操作體驗磁極、磁力大小及間的交互作用。</td>
<td>INe-Ⅲ-7</td>
</tr>
<tr>
<td></td>
<td>7-2 可透過操作,了解磁力的強弱可由吸起</td>
<td></td>
<td>7-1 可使用噴水器在陽光下,觀察彩虹現象,並發現彩虹與太陽的相對位置關係。或由透過光碟片、三</td>
</tr>
</tbody>
</table>

液的酸鹼性。
<table>
<thead>
<tr>
<th>跨科概念</th>
<th>第二學習階段</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>第三學習階段</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>跨科概念</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
</tr>
<tr>
<td>8-1</td>
<td>可透過以不同的物質連成通路,觀察燈泡是否發光的活動,來判斷該物質是否為良導電。</td>
<td>8-1</td>
<td>可透過以不同的物質連成通路,觀察燈泡是否發光的活動,來判斷該物質是否為良導電。</td>
<td></td>
<td>8-1</td>
<td>可透過以不同的物質連成通路,觀察燈泡是否發光的活動,來判斷該物質是否為良導電。</td>
<td></td>
</tr>
<tr>
<td>8-2</td>
<td>透過實作活動將電池、電線或金屬物質、燈泡或馬達接成通路,使燈泡發光發熱、馬達轉動。</td>
<td></td>
<td></td>
<td>8-2</td>
<td>透過實作活動將電池、電線或金屬物質、燈泡或馬達接成通路,使燈泡發光發熱、馬達轉動。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-3</td>
<td>透過活動認識或了解生活中有許多器材應用透鏡。</td>
<td></td>
<td></td>
<td>8-3</td>
<td>透過活動認識或了解生活中有許多器材應用透鏡。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-4</td>
<td>可透過實驗發現放大鏡會聚光線。</td>
<td></td>
<td></td>
<td>8-4</td>
<td>可透過實驗發現放大鏡會聚光線。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-5</td>
<td>可由實驗觀察透鏡的成像。</td>
<td></td>
<td></td>
<td>8-5</td>
<td>可由實驗觀察透鏡的成像。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1</td>
<td>透過實驗發現電池的串、並聯,對燈泡亮度的影響。</td>
<td></td>
<td>9-1</td>
<td>可由實驗察覺指北針的指針具有磁性,會受地磁的影響指向下南極。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-2</td>
<td>可由實驗察覺指北針的指針具有磁性,會受地磁的影響指向下南極。</td>
<td></td>
<td>9-2</td>
<td>可由實驗察覺指北針的指針具有磁性,會受地磁的影響指向下南極。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-1</td>
<td>觀察人類的眼睛在室內外環境下瞳孔變化情形,察覺瞳孔</td>
<td></td>
<td>10-1</td>
<td>可透過實驗察覺指北針的指針具有磁性,會受地磁的影響指向下南極。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-2</td>
<td>介紹地球的 N 與 S 極。</td>
<td></td>
<td>10-2</td>
<td>介紹地球的 N 與 S 極。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>第三學習階段</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>起生理和行為反應。</td>
<td>10-2</td>
<td>對光線明暗的反應。利用手觸摸冰水、溫水，手的反應與感覺，體會身體對外在環境溫度變化的反應。</td>
<td>附近指北針偏轉。改變電流方向或大小，可以調控電磁鐵的磁極方向或磁力大小。</td>
<td>10-2</td>
<td>指北針產生偏轉。透過電磁鐵實作活動，觀察磁力大小與磁極方向的改變及影響因素。</td>
<td>10-3</td>
<td>可由實驗發現電磁鐵通電才具有磁性，斷電磁性就消失。</td>
</tr>
<tr>
<td>10-4</td>
<td>可由實驗發現改變電流方向，會改變電磁鐵的磁極方向。</td>
<td>10-5</td>
<td>透過設計實驗，控制變因，發現鐵棒、線圈數、線圈粗細、電池電力、串聯電池數等會影響電磁鐵的磁力大小（著重於使學生熟悉實驗設計與變因的控制，不一定所有變因都要進行實驗）。</td>
<td>11-1</td>
<td>經由種植植物的過程，例如：蕃茄或白菜，察覺植物需要陽光、水分，當環境條件改變時，植物生長會受到影響。</td>
<td>11-2</td>
<td>經由種植植物的過程，例如：蕃茄或白菜，察覺植物需要陽光、水分，當環境條件改變時，植物生長會受到影響。</td>
</tr>
<tr>
<td>11-1</td>
<td>經由種植植物的過程，例如：蕃茄或白菜，察覺植物需要陽光、水分，當環境條件改變時，植物生長會受到影響。</td>
<td>11-2</td>
<td>經由種植植物的過程，例如：蕃茄或白菜，察覺植物需要陽光、水分，當環境條件改變時，植物生長會受到影響。</td>
<td>11-1</td>
<td>經由種植植物的過程，例如：蕃茄或白菜，察覺植物需要陽光、水分，當環境條件改變時，植物生長會受到影響。</td>
<td>11-2</td>
<td>經由種植植物的過程，例如：蕃茄或白菜，察覺植物需要陽光、水分，當環境條件改變時，植物生長會受到影響。</td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>學習內容</td>
<td>學習內容</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>程，例如：蕃茄或白菜，察覺植物會向陽光的方向生長的現象。</td>
<td></td>
<td>或觀看影片、圖片，了解動物的保護行為有不同的類型，例如：某些昆蟲的假死、親鳥護雛的擬傷行為、蜘蛛的護卵與護幼行為等。</td>
<td>11-3 經由觀察各種動物或觀看影片、圖片，了解動物的繁殖方式有卵生、胎生，並知道兩者不同處。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11-4 觀察螞蟻、蜜蜂或觀看影片、圖片，了解動物的社會性行為。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11-5 經由觀察蝙蝠、蜜蜂、蛾等動物或觀看影片、圖片，了解動物可利用物理性、化學性方式傳遞訊息。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INe-III-12 生物的分布和習性，會受環境因素的影響；環境改變也會影響生存於其中的生物種類。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-1 可觀察仙人掌，了解這類植物為了適應沙漠環境，葉退化為針狀。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-2 動物為了適應環境改變，而有遷移的行為，例如：夏候鳥、冬候鳥。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
<td></td>
<td></td>
</tr>
<tr>
<td>科學與生活（INf）</td>
<td>INf-Ⅱ-1</td>
<td>日常生活中常見的科技產晶。</td>
<td>1-1</td>
<td>認識科技產品對日常生活的影響，例如：醫藥治療疾病、石化製品讓生活便利等。</td>
<td>INf-Ⅲ-1</td>
<td>世界與本地不同性別科學家的事蹟與貢獻。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INf-Ⅱ-2</td>
<td>不同的環境影響人類食物的種類、來源與飲食習慣。</td>
<td>2-1</td>
<td>比較住在海邊與山區的人們常食用的當地食物種類，了解因環境不同人們可使用的生物資源也不同。</td>
<td>INf-Ⅲ-2</td>
<td>科技在生活中的應用與對環境與人體的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INf-Ⅱ-3</td>
<td>自然的規律與變化對人</td>
<td>3-1</td>
<td>觀察植物的季節性規律變化所形成的</td>
<td>INf-Ⅲ-3</td>
<td>自然界生物的特徵與原</td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習内容</td>
<td>学习内容说明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>資源與永續性（INg）</td>
<td>自然環境中有許多資源。人類生存與生活需依賴自然環境中的各種資源，但自然資源都是有限的，需要珍惜使用。</td>
<td>INg-Ⅲ-1</td>
<td>自然景觀和環境一旦被改變或破壞，極難恢復。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-1</td>
<td></td>
<td>1-1</td>
<td>観察各地自然景觀和環境（野柳、太魯閣），察覺一旦被改變或破壞，極難恢復。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INf-Ⅱ-6</td>
<td>地震會造成嚴重的災害，平時的準備與防災能降低損害。</td>
<td>6-1</td>
<td>生活中的電器可以產生電磁波，具有功能但也可造成傷害。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-1</td>
<td>6-1</td>
<td>可使用簡易的電磁波探測器進行活動，了解通電的電器、手機、基地台等會產生電磁波。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-2</td>
<td>6-2</td>
<td>可透過影片認識電磁波的對人體的影響與安全防護。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-2</td>
<td>6-3</td>
<td>可透過活動知道生活中有許多電子通訊產應用電磁波。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INf-Ⅱ-7</td>
<td>水與空氣汙染會對生物產生影響。</td>
<td>7-1</td>
<td>經由觀察水中生物，察覺水污染會對生物生長產生影響。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-1</td>
<td>7-1</td>
<td>可透過活動知道生活中有許多電子通訊產應用電磁波。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-1</td>
<td>7-2</td>
<td>蒐集空氣污染新聞事件，察覺空氣污染對生物的影響。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-2</td>
<td>7-3</td>
<td>可透過活動知道生活中有許多電子通訊產應用電磁波。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>用。</td>
<td>1-3 知道如何在實際生活情境中，有效地省水與省電。</td>
<td>1Ng-Ⅲ-2 人類活動與其他生物的活動會相互影響，不當引進外來物種可能造成經濟損失和生態破壞。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-4 知道什麼是綠色消費，避免使用一次性產品。</td>
<td>2-1 藉由國內外著名</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-5 知道資源如何分類回收與再利用。</td>
<td>的滅絕或瀕臨滅絕物種案例，探討人類不當的使用和開發行為已造成某些生物生存的危機。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-6 人類生活中利用許多生物資源。</td>
<td>2-2 人類因經濟活動從其他地區或國家引進外來物種，有些外來物種在自然生態環境中大量繁殖並侵犯本地原生生物，</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-7 觀察或蒐集食、衣、住、行、育、樂等生活所需資源，察覺有很多是屬於生物資源，例如：食物、藥、染料、家俱等。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-3 而被列為外來入侵種。透過閱讀小花蔓澤蘭、吳郭魚、福壽螺、紅火蟻等外來入侵種的資料，察覺人們不當引進外來物種，會造成經濟損失和生態破壞。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Ng-Ⅱ-3</td>
<td>可利用垃圾減量、資源回收、節約能源等方法來保護環境。</td>
<td>3-1 能在生活中落實資源回收再利用（例如：製作科學玩具等）、節約能源及植樹造林等方法，來盡到人類保護環境的世界公民責任。</td>
<td>1Ng-Ⅲ-3 生物多樣性對人類的重要性，而氣候變遷將對生物生存造成影響。</td>
<td>3-1 討論人類的食物來源多樣性的好處。 3-2 討論全球暖化對寒帶、溫帶、熱帶生物的影響，察覺氣候變遷影響生物生存。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-1 人類的活動會造成氣候變遷，加劇對生態與環境的影響。</td>
<td>4-2 例如：化石燃料的使用會排放過量的溫室氣體，而造成全球暖化。透過教學與議題討論，了解人類過度的溫室氣體排放會改變地球原本的氣候環境，而造成氣候變遷，人類的活動也因受到影響而改變，必須要進行調適才能生存下去。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>第三學習階段</td>
<td>備註</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>學習內容說明</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>能源的使用與地球永續發展息息相關。</td>
<td>INg-Ⅲ-5</td>
<td>5-1</td>
<td>可透過閱讀、影片、校外課程等認識再生能源與非再生能源實例與對於地球環境的影響。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可透過適當的體驗活動，例如：節約用水、用電等，了解能源的可貴。</td>
<td>5-2</td>
<td>可透過資料蒐集與討論，了解臺灣主要的電力能源，例如：火力、水力、核能等的情形。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可透過對目前能源議題的探究，進一步探索新興能源與綠能，例如：風力、太陽能，並使能了解發展新興能源與綠能之必要性。</td>
<td>5-3</td>
<td>以課題方式融入探究與實作課程內容探究相關議題，認識碳足跡、水足跡與溫室效應。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>碳足跡與水足跡所代表環境的意涵。</td>
<td>INg-Ⅲ-6</td>
<td>6-1</td>
<td>針對碳足跡、水循環與溫室氣體影響等</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨科概念</td>
<td>第二學習階段</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>第三學習階段</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>議題討論氣候變遷、生物生存問題、資源及環境利用等有關議題。教學上，可由資料搜尋整理報告及議題討論等方式進行，嘗試提供解決問題的方法並建立良好的環境態度。</td>
<td>1Ng-Ⅲ-7</td>
<td>人類行為的改變可以減緩氣候變遷所造成的衝擊與影響。</td>
<td>7-1</td>
<td>當人類開始降低或減少不當行為，例如：過度排放溫室氣體、大量砍伐生態雨林等，才能減緩氣候變遷所造成的衝擊與影響。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
二、國民中學教育階段（第四學習階段）

（一）國民中學-生物

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量的形式、轉換及流動（B）</td>
<td>Bc-IV-1</td>
<td>生物體內的能量與代謝（Bc）</td>
<td>1-1 細胞可以利用酵素合成物質或分解物質。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bc-IV-2</td>
<td></td>
<td>1-2 進行實驗，探討改變單一自變項對酵素作用速率的影響，例如：溫度對唾液分解澱粉的影響。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bc-IV-3</td>
<td></td>
<td>2-1 所有細胞皆需利用養分進行呼吸作用釋放能量，供生物生存所需。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bc-IV-4</td>
<td></td>
<td>3-1 知道植物進行光合作用製造養分與氧氣，不涉及光反應、暗碳反應等過程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bc-IV-5</td>
<td></td>
<td>4-1 設計實驗證明「光合作用需要日光」。【探討活動】</td>
<td></td>
</tr>
<tr>
<td>生態系中能量的流動與轉換（Bd）</td>
<td>Bd-IV-1</td>
<td>生態系中的能量來源是太陽，能量會經由食物鍊在不同生物間流轉。</td>
<td>1-1 認識能量的多種形式，知道不同形式的能量可以相互轉換。</td>
<td>1. 碳元素的循環，化石燃料的形成、開採、利用，可與地球科學課程進行跨科教學。</td>
</tr>
<tr>
<td></td>
<td>Bd-IV-2</td>
<td>生態系中，碳元素會出現在不同的物質中（例如：二氧化碳、葡萄糖），在生物與無生物間循環使用。</td>
<td>1-2 食物鍊中有物質轉換與能量流動的現象。</td>
<td>2. 含碳物質的結構、循</td>
</tr>
<tr>
<td></td>
<td>Bd-IV-3</td>
<td>生態系中，生產者、消費者和分解者共同促成能量的流轉和物質的循環。</td>
<td>2-1 了解碳元素會出現在不同的物質中，在生物與無生物間循環使用。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bd-IV-4</td>
<td></td>
<td>3-1 了解分解者參與物質的循環及能量的流轉，不涉及分解者的定義與作用方式。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>生物體的構造與功能 (D)</td>
<td>細胞的構造與功能 (Da)</td>
<td>Da-IV-1 使用適當的儀器可觀察到細胞的形態及細胞膜、細胞質、細胞核、細胞壁等基本構造。細胞是生物體的基本單位。</td>
<td>1-1 以顯微鏡觀察動物體細胞，例如：口腔皮膚細胞、葉的下表皮細胞或香蕉果肉細胞等。觀察後能描繪出細胞的形態，辨認細胞核、細胞質和細胞膜等構造。</td>
<td>3. 化石燃料使用所帶來的問題可融入環境教育。環、可與化學課程進行跨科教學。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Da-IV-2 多細胞個體具有細胞、組織、器官、器官系統等組成層次。</td>
<td>2-1 比較動植物細胞在形態、構造上的異同，並探討形態與構造的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Da-IV-3 細胞會進行細胞分裂，染色體在分裂過程中會發生變化。</td>
<td>3-1 多細胞生物的細胞有不同的形態，其組成層次可分為細胞、組織、器官、器官系統等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Da-IV-4</td>
<td>3-2 了解細胞是生物體的構造單位也是功能的基本單位，在功能部分只以光合作用和呼吸作用為例。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 知道有些細胞較常進行細胞分裂，在細胞分裂過程中染色體會有變化，如複製、平均分配等，不涉及染色體的構造及細胞分裂的過程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>動植物體的構造與功能 (Db)</td>
<td>Db-IV-1 動物體（以人體為例）經由攝食、消化、吸收獲得所需的養分。</td>
<td>1-1 認識消化道的構造，並了解其所發揮的物理作用（例如：磨碎、攪拌）。</td>
<td>5-1 生物體構造與</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>功能（Db）</td>
<td>Db-IV-2</td>
<td>動物體（以人體為例）的循環系統能將體內的物質運輸至各細胞處，並進行物質交換。並經由心跳、心音及脈搏的探測，以了解循環系統的運作情形。</td>
<td>1-2 認識消化腺及其所分泌的消化液，了解消化液的作用。</td>
<td>功能可做為物理教學的例子，例如：簡單機械可以運動構造為例，浮力、流體力學可以鳥、魚的構造與體形為例，成像原理可以視覺器官為例。</td>
</tr>
<tr>
<td></td>
<td>Db-IV-3</td>
<td>動物體（以人體為例）藉由呼吸系統與外界交換氣體。</td>
<td>1-3 了解食物在人體消化系統內的變化。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Db-IV-4</td>
<td>生殖系統（以人體為例）能產生配子進行有性生殖，並且有分泌激素的功能。</td>
<td>2-1 藉由觀察魚的尾鰭血液，及探測人體心音與脈搏，了解循環系統的構造與運作模式。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Db-IV-5</td>
<td>動植物體適應環境的構造常成為人類發展各種精密儀器的參考。</td>
<td>2-2 了解循環系統能運送與交換細胞所需的物質和排出細胞產生的廢物。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Db-IV-6</td>
<td>植物體根、莖、葉、花、果實內的維管束具有運輸功能。</td>
<td>2-3 比較血液循環系統和淋巴系統的異同及關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Db-IV-7</td>
<td>植物體根、莖、葉、花、果實內的維管束具有運輸功能。</td>
<td>2-4 以預防注射為例，認識淋巴系統能產生抗體，預防下一次的感染，不涉及各種免疫細胞的名稱、功能及機制。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Db-IV-8</td>
<td>植物體的分布會影響水分在地表的流動，也會影響氣溫和空氣品質。</td>
<td>3-1 比較、歸納出呼吸器官的特性與功能。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 動物體的血液系統能將體內的物質運輸至各細胞處，並進行物質交換。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-3 植物在水土保持及淨化空氣或對氣溫的影響可做為地球科學之課題。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-1 植物在水土保持及淨化空氣或對氣溫的影響可做為地球科學之課題。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>生物體內的恆定性與調節（Dc）</td>
<td>Dc-IV-1</td>
<td>人體的神經系統能察覺環境的變動並產生反應。</td>
<td>7-1 觀察不同植物的雌雄蕊差異，探討花的構造和授粉的關聯，如自花授粉和異花授粉，蝱媒花和鳥媒花的差異。【探討活動】</td>
<td>變、水土保持等內容。</td>
</tr>
<tr>
<td></td>
<td>Dc-IV-2</td>
<td>人體的內分泌系統能調節代謝作用，維持體內物質的恆定。</td>
<td>7-2 不同植物的花粉具有不同的形態，花粉可萌發長出花粉管。用顯微鏡可觀察到花粉與花粉管的外形。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dc-IV-3</td>
<td>皮膚是人體的第一道防禦系統，能阻止外來物，例如：細菌的侵入；而淋巴系統則可進一步產生免疫作用。</td>
<td>7-3 被子植物藉由空氣、昆蟲或鳥類等方式授粉，授粉後胚珠可形成種子，子房可形成果實。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dc-IV-4</td>
<td>人體會藉由各系統的協調，使體內所含的物質以及各種狀態能維持在一定範圍內。</td>
<td>8-1 了解植物在水土保持、降溫及清淨空氣等方面的影响，如有無植被、水土流失量的比較，或實測各類植物覆蓋的降溫效果。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dc-IV-5</td>
<td>生物體能察覺外界環境變化，採取適當的反應以使體內環境維持恆定，這些現象能以觀察或改變自變項的方式來探討。</td>
<td>1-1 認識從刺激到完成反應所需的元件包括:感受器、動器、傳遞訊息的線路、控制中心等，協助學生了解人類神經系統的運作。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-2 以實作方式測試人體能察覺環境刺激的類別及限制。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-3 認識神經系統運作的方式和重要性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-1 說明神經系統和內分泌系統運作方式的異同，以及其協調的方式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-2 認識內分泌系統的作用方式，不涉及激素的作用機制。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 認識皮膚在防禦外來病菌入侵所扮演的角色。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 了解人類在防禦疾病所做的研究，並連結淋巴系統單元，了解疫苗的原理，及預防注射的重要性，不涉及疫苗類型、抗體產生的機制。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>地球環境（F）</td>
<td>生物圈的組成（Fc）</td>
<td>Fc-IV-1 生物圈內含有不同的生態系。生態系的生物因子，其組成層次由低到高為個體、族群、群集。組成生物體的基本層次是細胞，而細胞則由醣類、蛋白質及脂質等分子所組成，這些分子則由更小的粒子所組成。</td>
<td>4-1 以人體內環境維持恆定為例，了解生物體是透過多個系統的協調作用以維持體內的恆定，例如：血糖恆定的維持。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fc-IV-2</td>
<td>4-2 物質含量的恆定以血糖、水分、含氮廢物、氧氣、二氧化碳為例，各種狀態的恆定以心跳頻率、呼吸運動頻率、體溫、血壓為例，不涉及調控機制。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 了解動物能覺察外界環境變化、採取適當的反應以使體內環境維持恆定，只探討現象，不涉及機制。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-2 了解植物能覺察外界環境變化，採取適當的反應，只探討現象，不涉及機制。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-3 設計實驗探討影響植物感應的因素，例如：「光的強度對向光性的影響？」「哪些因素可以使含羞草的小葉閉合？」「睡眠運動是受光線影響嗎？」等。【探討活動】</td>
<td></td>
</tr>
</tbody>
</table>

【探討活動】

1. 各生態系的環境因子可與地球科學進行跨科教學。
2. 元素符號與基本性質等可與化學進行跨科教學。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>演化與延續（G）</td>
<td>生殖與遺傳（Ga）</td>
<td>Ga-IV-1 生物的生殖可分為有性生殖與無性生殖，有性生殖產生的子代其性狀和親代差異較大。</td>
<td>1-1 了解有性生殖和無性生殖的差異，以及兩者在物種延續上的意義。</td>
<td>教學。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-2 人類的性別主要由X染色體決定。</td>
<td>1-2 了解生物有性生殖時的各種策略。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-3 人類的ABO血型是可遺傳的性狀。</td>
<td>2-1 知道人類性別主要由X染色體決定，但還有其他因素（例如：激素）會影響表現型的表現等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-4 遺傳物質會發生變異，若變異發生在生殖細胞可傳承到後代。</td>
<td>3-1 知道血型的遺傳模式，能推算親代和子代的血型關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-5 生物技術的進步，有助於解決農業、食品、能源、醫藥，以及環境相關的問題。但可能帶來新問題。</td>
<td>4-1 知道遺傳物質會突變，認識生活中會導致突變的因素。遺傳物質會發生變異，其變異可能造成性狀的改變。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ga-IV-6 孟德爾遺傳研究的科學史。</td>
<td>4-2 舉例說明突變可能導致性狀改變。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>演化（Gb）</td>
<td>Gb-IV-1 從地層中發現的化石，可以知道地球可能會存在許多的生物，但有些生物已經消失了，例如：三葉蟲、恐龍等。</td>
<td>4-3 說明變異發生在生殖細胞可傳承到後代。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gb-IV-2 孟德爾進行豌豆雜交試驗，從數據中找出子代中表現顯性、隱性性狀和個體例數有特定比例。</td>
<td>5-1 了解現代生物技術的發展與應用，不涉及生物技術原理及技術。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gb-IV-3 孟德爾以成對遺傳因子及顯性、隱性觀點解釋試驗結果。不涉及分離律及獨立分配律。</td>
<td>5-2 知道科技的發展需兼顧生物與環境倫理。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gb-IV-4 從地層中發現的化石，可以知道地球可能會存在許多的生物，但有些生物已經消失了，例如：三葉蟲、恐龍等。</td>
<td>5-3 以基因改造作物為例，討論基因改造作物的利弊。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gb-IV-5 孟德爾進行豌豆雜交試驗，從數據中找出子代中表現顯性、隱性性狀和個體例數有特定比例。</td>
<td>6-1 孟德爾以成對遺傳因子及顯性、隱性觀點解釋試驗結果。不涉及分離律及獨立分配律。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gb-IV-6 孟德爾進行豌豆雜交試驗，從數據中找出子代中表現顯性、隱性性狀和個體例數有特定比例。</td>
<td>6-2 孟德爾以成對遺傳因子及顯性、隱性觀點解釋試驗結果。不涉及分離律及獨立分配律。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>生物多樣性 (Gc)</td>
<td>Gc-IV-1</td>
<td>依據生物形態與構造的特徵，可以將生物分類。</td>
<td>1-1 知道生物學名的命名原則及學名的必要性。</td>
<td>元 可 融 入 生 物 演 化 歷 史。</td>
</tr>
<tr>
<td></td>
<td>Gc-IV-2</td>
<td>地球上有形形色色的生物，在生態系中擔任不同的角色，發揮不同的功能，有助於維持生態系的穩定。</td>
<td>1-2 知道分類學常用的七個分類階層：認識生活中常見或常被提起的細菌、真菌及原生物。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gc-IV-3</td>
<td>人的體表和體內有許多微生物，有些微生物對人體有利，有些則有害。</td>
<td>1-3 知道常見的動物、植物所屬的類別及其被歸類為此類別的主要特徵。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gc-IV-4</td>
<td>人類文明發展中有許多利用微生物的例子，例如：早期的釀酒、近期的基因轉殖等。</td>
<td>2-1 了解生物在生態系中擔任的角色及其重要性，或以人類食、衣、住、行、藥物等需求，覺察生物多樣性的重要性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 知道生活中有許多肉眼難以觀察到的微生物，並能以顯微鏡觀察水中的微生物。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 了解人體內的微生物具有多樣性，對人體的影響也可能有益或有害，且微生物間會交互作用。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 了解人類會利用微生物來改善生活，例如：用來製作麵包、醬油、酒，及應用微生物來做基因轉殖。此處著重微生物的多樣性及其與人類的關係，不涉及微生物分類、名稱及基因轉殖過程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-2 了解抗生素的發現過程，並知道合理使用抗生素的重要性。</td>
<td></td>
</tr>
<tr>
<td>生物與環境（L）</td>
<td>生物間的交互作用（La）</td>
<td>隨著生物間、生物與環境間的交互作用，生態系中的結構會隨時間改變，形成演替現象。</td>
<td>1-1 了解生物與生物間、生物與環境間會產生交互作用，造成演替現象，不涉及詳細的過程及各種生物出現的順序。</td>
<td>實 測 各 種 物 理 因 子</td>
</tr>
<tr>
<td></td>
<td>La-IV-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lb-IV-1</td>
<td>生態系中的非生物因子會影響生物的分布與生存，環境調查時常需檢測。</td>
<td>1-1 了解生態學在研究生物間、生物與環境之間的交互作用。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>作用 (Lb)</td>
<td>Lb-IV-2</td>
<td>非生物因子的變化。人類活動會改變環境，也可能影響其他生物的生存。</td>
<td>1-2 實測校園、社區等處之環境因子（例如：光照、溫度、濕度、酸雨、水中溶氧量、噪音），或調查族群的個體數與族群密度變動，並解讀數據，分析環境因子及族群變動的關係。【探討活動】</td>
<td>(例如：光照、溫度、濕度、酸雨、水中溶氧量)，可融入物理、化學的知識及技術。</td>
</tr>
<tr>
<td></td>
<td>Lb-IV-3</td>
<td>人類可採取行動來維持生物的生存環境，使生物能在自然環境中生長、繁殖、交互作用，以維持生態平衡。</td>
<td>2-1 結合環境開發、農業生產、工業發展等經濟、社會議題，探討人類活動對環境及其他生物的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 非生物因子的變化。人類活動會改變環境，也可能影響其他生物的生存。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(M)</td>
<td>科學、技術及社會的互動關係(Ma)</td>
<td>生命科學的進步，有助於解決社會中發生的農業、食品、能源、醫藥，以及環境相關的問題。保育工作不是只有科學家能夠處理，所有的公民都有權利及義務，共同研究、監控及維護生物多樣性。各種本土科學知能（含原住民族科學與世界觀）對社會、經濟環境及生態保護之啟示。</td>
<td>1-1 以品種改良技術為例，了解生命科學對農業、食品的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ma-IV-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ma-IV-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ma-IV-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>科學發展的歷史(Mb)</td>
<td>Mb-IV-1</td>
<td>生物技術的發展是為了因應人類需求，運用跨領域技術來改造生物。發展相關技術的歷程中，也應避免對其他生物以及環境造成過度的影響。科學史上重要發現的過程，以及不同性別、背景、族群者於其中的貢獻。</td>
<td>1-1 以品種改良技術為例，了解生命科學對農業、食品的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mb-IV-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-2 以疫苗的研發為例，了解生命科學對醫療、人類健康的影響。 1-3 知道生命科學在解決能源、環境問題所扮演的角色。 2-1 以實例探討「公民參與維護生物多樣性」的可行方式。 5-1 建議採用各種本土科學知能為例，如原住民族生活經驗或傳統生態知識具體示例，結合相關學習內容條目進行教學。 2-1 擇例簡介生物科學家之貢獻與研究歷程，並兼顧不同族群、性別與背景。此內容應融入相關章節，不必另成一個單元。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學在生活中的應用（Mc）</td>
<td>Mc-IV-1</td>
<td>生物生長條件與機制在處理環境汙染物質的應用。</td>
<td>1-1 融入次主題「動植物體的構造與功能」，知道植物能淨化空氣或水質。</td>
<td>溫度概念及檢測屬物理內容，空氣品質屬化學內容。</td>
</tr>
<tr>
<td></td>
<td>Mc-IV-2</td>
<td>運用生物體的構造與功能，可改善人類生活。</td>
<td>2-1 融入次主題「動植物體的構造與功能」，將植物的特性與生長機制運用於設計綠能建築、綠化屋頂，或是參考動物流線型身體運用於設計交通工具或建築。</td>
<td></td>
</tr>
<tr>
<td>天然災害與防治（Md）</td>
<td>Md-IV-1</td>
<td>生物保育知識與技能在防治天然災害的應用。</td>
<td>1-1 融入次主題「生物與環境的交互作用」，認識山坡地保育對災害防治的重要性。</td>
<td></td>
</tr>
<tr>
<td>環境汙染與防治（Me）</td>
<td>Me-IV-1</td>
<td>環境汙染物對生物生長的影響及應用。</td>
<td>1-1 融入次主題「生物體內的恆定性與調節」、「生物與環境的交互作用」，了解環境汙染物可能會影響人體的生理調節機能。</td>
<td>體溫調節融入熱的傳播等物理概念；環境汙染物的種類、監測、融入物理概念。</td>
</tr>
<tr>
<td></td>
<td>Me-IV-6</td>
<td>環境汙染物與生物放大的關係。</td>
<td>6-1 了解環境汙染物會透過食物鍵進入較高階層的生物體內，並可能累積於體內。</td>
<td></td>
</tr>
<tr>
<td>資源與永續發展（N）</td>
<td>Na-IV-1</td>
<td>利用生物資源會影響生物間相互依存的關係。</td>
<td>1-1 融入次主題「生物與環境的交互作用」，例如：如何永續利用漁業資源。</td>
<td>生物資源的分布，例如：海洋漁業資源、森林資源可融入地球</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>氣候變遷之影響與調適（Nb）</td>
<td>Nb-IV-1</td>
<td>全球暖化對生物的影響。</td>
<td>1-1 融入次主題「生物與環境的交互作用」，了解全球暖化會改變生物生存的環境，影響生物的生長與生存。</td>
<td>科學內容。</td>
</tr>
<tr>
<td>能源的開發與利用（Nc）</td>
<td>Nc-IV-1</td>
<td>生質能源的發展現況。</td>
<td>1-1 融入次主題「生物與環境的交互作用」，了解生質能源的種類與使用狀況。並了解開發能源具有風險，應依據證據來評估與決策。</td>
<td>生質能源的開發可融入化學概念。</td>
</tr>
</tbody>
</table>

(二) 國民中學-物理

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量的形式</td>
<td>能量的形式及流動（B）</td>
<td>Ba-IV-1</td>
<td>能量有不同形式，例如：動能、熱能、光能、電能、化學能等，而且彼此之間可以轉換。孤立系統的總能量會維持定值。</td>
<td>1-1 介紹以不同形式呈現的能，例如：動能、重力位能、彈力位能、光能、電能、熱能、核能、化學能等。</td>
</tr>
<tr>
<td>Ba-IV-2</td>
<td>光合作用是將光能轉換成化學能；呼吸作用是將化學能轉換成熱能。</td>
<td>2-1 回顧生物課程的光合作用與呼吸作用。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba-IV-3</td>
<td>化學反應中的能量改變，常以吸熱或放熱的形式發生。</td>
<td>3-1 選舉會產生吸熱或放熱的化學反應例子，加以說明。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba-IV-4</td>
<td>電池是化學能轉變成電能的裝置。</td>
<td>4-1 從實驗現象說明電池反應時的能量轉換。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba-IV-5</td>
<td>力可以作功，作功可以改變物體的能量。</td>
<td>4-2 可透過分組提出日常生活中能量轉換的例子，並彼此分享。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba-IV-6</td>
<td>每單位時間對物體所做的功稱為功率。</td>
<td>5-1 介紹功的概念：對物體施力讓物體沿施力的方向產生位移，即對物體作功，物體的能量因此產生變化。</td>
<td>2. 化學反應中能量的轉換關係及例子，如電池。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ba-IV-7</td>
<td>物體的動能與位能之和稱為力學能，動能與位能可以互換。</td>
<td>5-2 以運動中的物體為例，物體會因為受摩擦力而漸慢至停，而且此時摩擦力的方向和物體位移的方向相反；以拉橡皮筋為例，用力將拉橡皮筋拉長，橡皮筋會因此儲存能量；以棒球投手投球為例，投手將對球施力的距離盡量延伸是為了增加棒球離手時的動能；兩磁鐵會因為吸力或斥力讓彼此靠近或遠離，進而轉換成磁鐵的動能。</td>
<td>3. 溫室效應及天氣現象是能量轉換的結果。</td>
<td></td>
</tr>
<tr>
<td>溫度與熱量 (Bb)</td>
<td>Bb-IV-1 熱具有從高溫處傳到低溫處的趨勢。透過水升高溫度所吸收的熱能定義熱量單位。</td>
<td>1-1 溫度可以量化物體的冷熱表現。</td>
<td>1. 從生物課程之 "生物體內的能量與代謝" 單元，例如：以水加熱等燃燒實驗，介紹熱量的定義。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bb-IV-2 不同物質受熱後，其溫度的變化可能不同，比熱就是此特性的定量化描述。</td>
<td>1-2 介紹常用的溫標，例如：攝氏、華氏等溫標，但不應將重點放在溫度之換算。</td>
<td>2. 以生物課程之 "生物體內的能量與代謝" 單元，例如：以水加熱等燃燒實驗，介紹熱量的定義。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bb-IV-3 熱的傳播方式包含傳導、對流與輻射。</td>
<td>1-3 介紹熱是兩物體或系統因溫度不同而傳遞的能量。</td>
<td>3. 以生物課程之 "生物體內的能量與代謝" 單元，例如：以水加熱等燃燒實驗，介紹熱量的定義。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bb-IV-4 熱會改變物質形態，例如：狀態產生變化、體積發生膨脹。</td>
<td>2-1 可以水加熱等燃燒實驗引入，介紹熱量常用單位。</td>
<td>4. 以生物課程之 "生物體內的能量與代謝" 單元，例如：以水加熱等燃燒實驗，介紹熱量的定義。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bb-IV-5 利用水加熱實驗討論熱量變化和物的質量、水溫變化的關係。</td>
<td>2-2 利用水加熱實驗討論熱量變化和物的質量、水溫變化的關係。</td>
<td>5. 以生物課程之 "生物體內的能量與代謝" 單元，例如：以水加熱等燃燒實驗，介紹熱量的定義。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-1 透過比熱實驗，讓學生能觀察到不同質量的不同物質加熱，各物質的溫度變化情形，以了解比熱對物質溫度變化影響，不涉及複雜計算。</td>
<td>4-1 透過熱的傳播實驗，觀察熱的三種傳播方式。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>物質系統</td>
<td>自然界的尺度與單位 (Ea)</td>
<td>Ea-IV-1</td>
<td>時間、長度、質量等為基本物理量，經由計算可得到密度、體積等衍生物理量。</td>
<td>5-1 以對物質加熱為例，可參考化學之【物質的形態、性質及分類】次主題之 2-1 以水的三態變化為例，描述溫度會影響物質的狀態。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ea-IV-2</td>
<td>以適當的尺度量測或推估物理量，例如：奈米到光年、毫克到公噸、毫升到立方公尺等。測量時可依工具的最小刻度進行估計。</td>
<td>5-2 可透過製作簡易溫度計實驗，觀察水與玻璃熱脹冷縮的現象。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ea-IV-3</td>
<td>例如測量長度可以進而計算面積與體積，測量重量可以得知質量，將質量除以體積可以得到描述物質特性的物理量——密度。認識不同的尺度，從原子分子、奈米尺度到生物的細胞、日常生活的物體到地球、星系、宇宙的尺度，知道量測的意義。</td>
<td>了解測量會有誤差，能說明減少誤差的方法以及知道估計值的意義。</td>
</tr>
<tr>
<td></td>
<td>力與運動 (Eb)</td>
<td>Eb-IV-1</td>
<td>力能引發物體的移動或轉動。力矩會改變物體的轉動，槓桿是力矩的作用。平衡的物體所受合力為零且合力矩為零。摩擦力可分靜摩擦力與動摩擦力。</td>
<td>1-1 由實驗或資料，推測力的屬性。適當的引入生活中常見的力，例如：摩擦力、空氣阻力、彈力、浮力等。介紹影響物體轉動效果的因素及力矩的定義、單位和方向。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eb-IV-2</td>
<td></td>
<td>2-1 透過實驗操作驗證槓桿原理，並能應用槓桿</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Eb-IV-5</td>
<td></td>
<td>壓力的定義與帕斯卡原理。</td>
<td></td>
<td>風的成因</td>
</tr>
<tr>
<td>Eb-IV-6</td>
<td></td>
<td>物體在靜止液體中所受浮力，等於排開液體的重量。</td>
<td></td>
<td>和摩擦力、壓力差有關。</td>
</tr>
<tr>
<td>Eb-IV-7</td>
<td></td>
<td>簡單機械，例如：槓桿、滑輪、輪軸、齒輪、斜面，通常具有省時、省力，或者是改變作用力方向等功能。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eb-IV-8</td>
<td></td>
<td>距離、時間及方向等概念可用來描述物體的運動。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eb-IV-9</td>
<td></td>
<td>圓周運動是一種加速度運動。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eb-IV-10</td>
<td></td>
<td>物體不受力時，會保持原有的運動狀態。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eb-IV-11</td>
<td></td>
<td>物體做加速度運動時，必受力。以相同的力量作用相同時間，則質量愈小的物體其受力後造成的速度改變愈大。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eb-IV-12</td>
<td></td>
<td>物體的質量決定其慣性大小。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eb-IV-13</td>
<td></td>
<td>對於每一作用力都有一個大小相等、方向相反的反作用力。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>自然界的現象與交互作用</td>
<td>波動、光及聲音（Ka）</td>
<td>波的特性，例如：波峰、波谷、波長、頻率、波速、振幅。</td>
<td>13-2 本次主題所有計算均限於單一物體受單一作用力之簡單計算。</td>
<td></td>
</tr>
<tr>
<td>Ka-IV-1</td>
<td></td>
<td>波的特性，例如：波峰、波谷、波長、頻率、波速、振幅。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-2</td>
<td></td>
<td>波傳播的類型，例如：橫波和縱波。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-3</td>
<td></td>
<td>介質的種類、狀態、密度及溫度等因素會影響聲音傳播的速率。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-4</td>
<td></td>
<td>聲波會反射，可以做為測量、傳播等用途。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-5</td>
<td></td>
<td>耳朵可以分辨不同的聲音，例如：大小、高低和音色，但人耳聽不到超聲波。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-6</td>
<td></td>
<td>由針孔成像、影子實驗驗證與說明光的直進性。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-7</td>
<td></td>
<td>光速的大小和影響光速的因素。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-8</td>
<td></td>
<td>透過實驗探討光的反射與折射規律。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-9</td>
<td></td>
<td>生活中有許多運用光學原理的實例或儀器，例如：透鏡、面鏡、眼睛、眼鏡及顯微鏡等。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-10</td>
<td></td>
<td>陽光經過三棱鏡可以分散成各種色光。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka-IV-11</td>
<td></td>
<td>物體的顏色是光選擇性反射的結果。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 聽覺與視覺和人耳的構造及眼睛的構造有關，矯正視力和光的折射有關。
2. 介紹顯微鏡、望遠鏡原理及放大倍率。
3. 日食與月食的成因與光的直進原理有關。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然界的現象與交互作用（Kb）</td>
<td>萬有引</td>
<td>物體在地球或月球等星體上因為星體的引力作用而具有質量。物體之質量與其質量有不同的物理量。帶質量的兩物體之間有重力，例如：萬有引力。此力大小與兩物體各自的質量成正比。與物體間距離的平方成反比。</td>
<td>具有可逆性。</td>
<td>8-2 學生能正確畫出入射線、法線和反射線的位置，以及說明入射角與反射角的關係。 8-3 透過實驗觀察面鏡的成像情形與物體到面鏡距離有關；透過實驗操作凸透鏡與凹透鏡，觀察物體與透鏡間的距離會影響像的大小、正倒立與位置，了解成像原理。 8-4 利用圖片說明視深與實際深度的成因與差異。 9-1 以人的眼睛構造說明和透鏡的關係，了解近視和遠視的成因，並知道配戴何種透鏡矯正視力。 9-2 以生活中常見儀器，說明透鏡的應用。 10-1 視光線經三棱鏡折射後分散成各種色光。 11-1 操作色光與顏色的實驗，觀察並了解色光對物體顏色變化的影響，說明顏色是光進入眼睛後所引發的一種視覺感受，知道不透明物體所顯示的顏色，與物體表面吸收與反射光的特性有關。知道透明物體的顏色由透射光決定。</td>
</tr>
<tr>
<td></td>
<td>力（Kb）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kb-IV-1</td>
<td>1-1 物體具有質量，當物體在地球或月球等星體上因為星體的引力作用而具有質量，而質量是不同的物理量。</td>
<td>太陽系內的行星和潮汐形成的原因與引力有關。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kb-IV-2</td>
<td>2-1 知道萬有引力定律的內容，了解物體的質量可能會隨地點不同而改變，只涉及兩個物體之間的計算。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電磁現象（Kc）</td>
<td>摩擦可以產生靜電，電荷有正負之別。</td>
<td></td>
<td></td>
<td>1-1 透過靜電現象系列實驗介紹摩擦起電、接觸起電及感應起電等分離電荷以產生靜電現象。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Kc-IV-2</td>
<td>靜止帶電物體之間有靜電力,同號電荷會相斥,異號電荷則會相吸。</td>
<td>2-1 介紹帶電物體之間的電力與其距離、電荷電性及電量有關, 只涉及兩個物體之間的計算。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kc-IV-3</td>
<td>磁場可以用磁力線表示,磁力線方向即為磁場方向, 磁力線越密處磁場越大。</td>
<td>3-1 觀察通電長直導線周圍鐵粉的分布, 引入磁力線的觀念。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kc-IV-4</td>
<td>電流會產生磁場, 其方向分布可以由安培右手定則求得。</td>
<td>4-1 介紹安培右手定則。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kc-IV-5</td>
<td>截流導線在磁場會受力, 並簡電動機的運作原理。</td>
<td>5-1 利用簡易小馬達 (電動機), 學習其運作原理。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kc-IV-6</td>
<td>環形導線內磁場變化, 會產生感應電流。</td>
<td>6-1 介紹法拉第電磁感應的例子與應用, 也可以用環形導線內磁場變化為例介紹發電機原理。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kc-IV-7</td>
<td>電池連接導體形成通路時, 多數導體通過的電流與其兩端電壓差成正比,其比值即為電阻。</td>
<td>7-1 使用三用電表或伏特計、安培計等儀器測電流、電壓, 觀察電阻的特性。不涉及電阻串、並聯公式計算。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kc-IV-8</td>
<td>電流通過帶有電阻物體時,能量會以發熱的形式逸散。</td>
<td>8-1 介紹生活中相關利用電流熱效應的電器。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-2 說明電流熱效應時, 不涉及電能之公式推導與電阻串、並聯電能計算。</td>
<td></td>
</tr>
</tbody>
</table>
科學、科技、社會及人文(M)
<table>
<thead>
<tr>
<th>科學、科技、社會及人文</th>
<th>科學、社會及人文的互動關係 (Ma)</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma-IV-5</td>
<td>各種本土科學知識 (含原住民族科學與世界觀) 對社會、經濟環境及生態保護之啟示。</td>
<td>5-1 建議採用各種本土科學知識為例, 如原住民族生活經驗或傳統生態知識具體示例, 結合相關學習內容條目進行教學。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>科學發展的歷史(Mb)</td>
<td>Mb-IV-2</td>
<td>科學史上重要發現的過程, 以及不同性別、 背景、族群者於其中的貢獻。</td>
<td>2-1 擇例簡介物理科學家之貢獻與研究歷程, 並兼顧不同族群、性別與背景。此內容應融入相關章節, 不必另成一個單元。</td>
<td></td>
</tr>
<tr>
<td>科學在生活中的應用(Mc)</td>
<td>Mc-IV-5</td>
<td>電力供應與輸送方式的概要。</td>
<td>5-7 認識電與生活, 例如: 用電安全、過載及短路、直流電與交流電、輸配電的概要、電器標示及電費計算, 說明電功率定義時, 不涉及電功率公式推導與電阻串、並聯電功率計</td>
<td></td>
</tr>
<tr>
<td>Mc-IV-6</td>
<td>電力供應與輸送方式的概要。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mc-IV-7</td>
<td>電器標示和電費計算。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>環境汙染與防治（Me）</td>
<td>Me-IV-7</td>
<td>對聲音的特性做深入的研究可以幫助我們更確實防範噪音的汙染。</td>
<td>7-1 說明噪音對人體的影響。</td>
<td></td>
</tr>
<tr>
<td>資源與永續發展（N）</td>
<td>Nc-IV-4</td>
<td>新興能源的開發，例如：風能、太陽能、核融合發電、氫電共生、生質能、燃料電池等。</td>
<td>4-1 介紹已開發或正在研究開發的新興能源。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nc-IV-5</td>
<td>新興能源的科技，例如：油電混合動力車、太陽能飛機等。</td>
<td>5-1 介紹以新興能源應用的科技產品。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nc-IV-6</td>
<td>臺灣能源的利用現況與未來展望。</td>
<td>6-1 請學生調查臺灣發電廠的能源利用現況，并討論未來的可能發展。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質的組成與特性（A）</td>
<td>Aa-IV-1</td>
<td>原子模型的發展。</td>
<td>1-1 原子模型的發展，宜引進科學史來解說，同時結合次主題科學發展的歷史（Mb）。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aa-IV-2</td>
<td>原子量與分子量是原子、分子之間的相對質量。</td>
<td>2-1 原子量可在介紹元素規律性和週期性時引進。原子量和分子量的介紹，不涉及亞佛加第數、莫耳相關運算。莫耳的觀念僅止於名詞的認識，不涉及莫耳數和原子、分子數量轉換的計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aa-IV-3</td>
<td>純物質包括元素與化合物。</td>
<td>3-1 可從「水電解」的實驗，說明元素與化合物的差異。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aa-IV-4</td>
<td>元素的性質有規律性和週期性。</td>
<td>4-1 可從一些實驗現象認識元素的規律性與週期性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aa-IV-5</td>
<td>元素與化合物有特定的化學符號表示法。</td>
<td>4-2 週期表的課程中，不需要學生記憶週期表，只需要讓學生知道元素是有規律性與週期性的。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 知道元素符號及化合物命名的簡單規則，並以日常生活中常出現的簡單物質為限。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>物質的形態、性質及分類（Ab）</td>
<td>Ab-IV-1</td>
<td>物質的粒子模型與物質三態。</td>
<td>1-1 從粒子觀點來描述物質三態與變化。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ab-IV-2</td>
<td>溫度會影響物質的狀態。</td>
<td>2-1 以水的三態變化為例，描述溫度會影響物質的狀態。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ab-IV-3</td>
<td>物質的物理性質與化學性質。</td>
<td>3-1 連結國民小學階段所學知識對物質的諸多性質進行分類。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ab-IV-4</td>
<td>物質依是否可用物理方法分離，可分為純物質和混合物。</td>
<td>4-1 認識常用物質的性質，將物質區分為混合物與純物質，做有系統的整理與歸納。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>物質的粒子模型與物質三態。</td>
<td>學習內容說明</td>
<td></td>
</tr>
<tr>
<td>物質的結構與功能（C）</td>
<td>Ca-IV-1</td>
<td>實驗分離混合物，例如：結晶法、過濾法及簡易濾紙色層分析法。化合物可利用化學性質來鑑定。</td>
<td>1-1 實際操作混合物分離的技術，例如：過濾法、結晶法與簡易的濾紙層析法，並從分離混合物的過程中，探討純物質與混合物的差異，以及純化物質的技術在生活上的應用。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ca-IV-2</td>
<td>化合物可利用化學性質來鑑定。</td>
<td>1-2 混合物分離部分，著重在技術操作。目標是讓學生能夠正確運用器材，將混合物分離，不涉及層析原理。</td>
<td></td>
</tr>
<tr>
<td>物質的結構與功能（Cb）</td>
<td>Cb-IV-1</td>
<td>分子與原子。元素會因原子排列方式不同而有不同的特性。分子式相同會因原子排列方式不同而形成不同的物質。</td>
<td>2-1 在不同的教學主題皆可引進物質鑑定的實作，例如：以實作的方式辨認化合物的酸鹼性或導電性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cb-IV-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cb-IV-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>物質系統（E）</td>
<td>Ec-IV-1</td>
<td>大氣壓力是因為大氣層中空氣的重量所造成。</td>
<td>1-1 從簡單的模型或符號說明原子與分子的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ec-IV-2</td>
<td>定溫下，定量氣體在密閉容器內，其壓力與體積的定性關係。</td>
<td>2-1 說明碳元素的各種形態時，介紹同素異形體的概念，不必強調名詞的記憶。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>物質的結構與功能（C）</td>
<td>學習內容說明</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>物質系統（E）</td>
<td>學習內容說明</td>
<td></td>
</tr>
</tbody>
</table>

可以以粒子觀點描述生物課程中提到的擴散現象。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質的反應、平衡及製造</td>
<td>物質反應規律（Ja）</td>
<td>Ja-IV-1</td>
<td>化學反應中的質量守恆定律。</td>
<td>1-1 結合次主題科學發展的歷史，以科學史說明質量守恆定律。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ja-IV-2</td>
<td>化學反應是原子重新排列。</td>
<td>2-1 從學生已經認識的諸多變化出發，將這些變化依照是否有產生新物質，歸納成物質變化或化學變化，並說明化學反應是原子重新排列。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ja-IV-3</td>
<td>化學反應中常伴隨沉澱、氣體、顏色及溫度變化等現象。</td>
<td>3-1 說明化學反應常伴隨沉澱、產生氣體、顏色及溫度變化等現象。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ja-IV-4</td>
<td>化學反應的表示法。</td>
<td>4-1 以簡單常見的化學反應介紹化學反應式的符號與意義。</td>
</tr>
<tr>
<td></td>
<td>水溶液中的變化</td>
<td>Jb-IV-1</td>
<td>由水溶液導電的實驗認識電解質與非電解質。</td>
<td>1-1 以探究方式認識電解質及其操作型定義，觀察純水、食鹽水和糖水等的導電性不同，辨別電解質與非電解質的差別。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jb-IV-2</td>
<td>電解質在水溶液中會解離出陰離子和陽離子而導電。</td>
<td>2-1 簡單的說明阿瑞尼斯的電離說。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jb-IV-3</td>
<td>不同的離子在水溶液中可能會發生沉澱、酸鹼中和及氧化還原等反應。</td>
<td>3-1 沉澱反應僅以鈣、鎂離子及碳酸根離子的反應為例。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jb-IV-4</td>
<td>溶液的概念及重量百分濃度（P%）、百萬分點的表示法（ppm）。</td>
<td>4-1 不涉及溶液混合與稀釋等濃度變化之計算，以日常用品的濃度表示法為重點，例如：飲料中溶質以重量或體積百分濃度表示；空氣汙染、水汙染則以百萬分點濃度來表示；環境汙染的議題可結合次主題科學在生活中應用，環境汙染與防治。</td>
</tr>
<tr>
<td></td>
<td>氧化與還原反應</td>
<td>Jc-IV-1</td>
<td>氧化與還原的狹義定義為：物質得到氧稱為氧化反應；失去氧稱為還原反應。</td>
<td>1-1 介紹化學上對於氧化與還原反應的狹義定義。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jc-IV-2</td>
<td>物質燃燒實驗認識氧化。</td>
<td>2-1 以鎂元素在氧氣中燃燒的實驗，產生白色氧化鎂，說明白色氧化鎂是鎂與氧的化合</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Jc-IV-3</td>
<td></td>
<td>不同金屬元素燃燒實驗認識元素對氧氣的活性。</td>
<td>1-1 以鎂、鋅、銅等元素燃燒時的劇烈程度來認識元素對氧活性的不同。</td>
<td>物課程中提到的呼吸作用、光合作用為例。或是地球科學在提化學風化作用時,會提到鐵的氧化。</td>
</tr>
<tr>
<td>Jc-IV-4</td>
<td></td>
<td>生活中常見的氧化還原反應與應用。</td>
<td>4-1 所舉實例應簡明扼要,例如：呼吸作用、光合作用、強氧化劑漂白衣物等。</td>
<td></td>
</tr>
<tr>
<td>Jc-IV-5</td>
<td></td>
<td>鋅銅電池實驗認識電池原理。</td>
<td>5-1 實際組裝鋅銅電池,並測試鋅銅電池的反應,以電子轉移過程說明電池的反應,不涉及廣義的氧化還原定義。</td>
<td></td>
</tr>
<tr>
<td>Jc-IV-6</td>
<td></td>
<td>化學電池的放電與充電。</td>
<td>6-1 介紹生活中常見的電池,例如：乾電池、鹼性電池、鋰蓄電池,但不涉及化學反應式。</td>
<td></td>
</tr>
<tr>
<td>Jc-IV-7</td>
<td></td>
<td>電解水與硫酸銅水溶液實驗認識電解原理。</td>
<td>7-1 以碳棒為電極,用直流電源實際電解水與硫酸銅水溶液,觀察電解硫酸銅的現象與原理,電解硫酸銅與電鍍,不涉及正、負極化學反應式。</td>
<td></td>
</tr>
<tr>
<td>Jc-IV-7</td>
<td></td>
<td></td>
<td>7-2 以直流電源實作銅的電鍍。</td>
<td></td>
</tr>
<tr>
<td>酸鹼反應 (Jd)</td>
<td>Jd-IV-1</td>
<td>金屬與非金屬氧化物在水溶液中的酸鹼性,及酸性溶液對金屬與大理石的反應。</td>
<td>1-1 以鎂與硫等在空氣中燃燒的產物溶於水後,測試水溶液的酸鹼性,說明金屬與非金屬氧化物水溶液的酸鹼性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jd-IV-2</td>
<td>酸鹼強度與pH值的關係。</td>
<td>1-2 取不同的酸,例如：食醋、稀鹽酸、稀硫酸等與大理石和鎂帶反應,觀察產生的氣體,說明酸性溶液對金屬與大理石的反應。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jd-IV-3</td>
<td>實驗認識廣用指示劑及pH計。</td>
<td>2-1 pH=7 時為中性,pH 值越小酸性越強;pH 值越大鹼性越強,不涉及計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jd-IV-4</td>
<td>水溶液中氫離子與氫氧根離子的關係。</td>
<td>2-2 pH 值與酸鹼濃度之關係,可用廣用試紙之顏色,推知pH 值之大小,以判斷酸鹼強度,不涉及氫離子莫耳濃度之計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jd-IV-5</td>
<td>酸、鹼、鹽類在日常生活中的應用與危險性。</td>
<td>3-1 實際操作廣用試紙或指示劑、酚酞指示劑或電子pH計。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jd-IV-6</td>
<td>實驗認識酸與鹼中和生成鹽和水,並可放出熱量而使溫度變化。</td>
<td>4-1 僅比較不同的酸鹼性氫離子和氫氧根離子講解酸與碳酸鹽類的反應時,可以提到此反應在地球科學中可用来進行岩石成分的鑑定。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 化學反應速率與平衡（Je） | Je-IV-1 | 實驗認識化學反應速率及影響反應速率的因素,例如:本性、溫度、濃度、接觸面積及催化劑。 | 5-1 介紹日常生活中的酸、鹼和鹽的應用及危險性,例如:浴廁清潔劑中的鹽酸會有發煙性及腐蝕性;製作肥皂時使用的氫氧化鈉遇水會放出高熱,且有強烈腐蝕性等。 | 5-1
<p>| | Je-IV-2 | 可逆反應。 | 6-1 實際操作酸鹼反應,觀察鹽類的產生與溫度變化,不涉及酸鹼滴定的濃度計算。滴定之計算列為高中化學加深加廣選修的學習內容。 | 6-1 |
| | Je-IV-3 | 化學平衡及溫度、濃度如何影響化學平衡的因素。 | 5-1 介紹日常生活中的酸、鹼和鹽的應用及危險性,例如:浴廁清潔劑中的鹽酸會有發煙性及腐蝕性;製作肥皂時使用的氫氧化鈉遇水會放出高熱,且有強烈腐蝕性等。 | 6-1 |
| 有機化合物的性質、製備及反應（Jf） | Jf-IV-1 | 有機化合物與無機化合物的重要特徵。 | 1-1 以實驗探究溫度、濃度與接觸面積的大小跟化學反應速率的關係,不涉及計算。 | 生物課程可在介紹生命時引進「有機」的觀念。 |
| | Jf-IV-2 | 生活中常見的烷類、醇類、有機酸及酯類。 | 2-1 從示範實驗或影片介紹可逆反應的簡單實例。 | 2-1 |
| | Jf-IV-3 | 酯化與皂化反應。 | 3-1 從演示或實驗影片說明溫度或濃度改變時如何影響化學平衡,不需要記憶反應結果與反應式。 | 3-1 |
| | Jf-IV-4 | 常見的塑膠。 | 4-1 介紹生活中常見的烷類(甲烷、丙烷、丁烷);醇類(甲醇、乙醇);有機酸(甲酸、乙酸);酯類(乙酸乙酯)及其在生活中的實例。 | 4-2 |
| | | | 2-2 簡介化石燃料的形成、特性及應用。 | 2-2 |
| | | | 3-1 以示範實驗或實作方式進行酯化與皂化反應。並實際體驗酯類的特殊氣味及肥皂的清潔能力。 | 3-1 |
| | | | 4-1 說明聚合物與小分子的差異,以及日常生活中的塑膠。 | 4-1 |
| | | | 4-2 以議題方式討論塑膠的汙染、回收及減量, | 4-2 |</p>
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學、科技、社會及人文(M)</td>
<td>科學、技術及社會的互動關係(Ma)</td>
<td>Ma-IV-3</td>
<td>同時結合次主題科學、技術及社會的互動關係。</td>
<td>以氟氯碳化物、化石燃料的使用等說明不同材料對生活及社會的影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma-IV-4</td>
<td>以氟氯碳化物、化石燃料的使用等說明不同材料對生活及社會的影響。</td>
<td>跨科主題【能量與能源】。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ma-IV-5</td>
<td>以氟氯碳化物、化石燃料的使用等說明不同材料對生活及社會的影響。</td>
<td>建議採用各種本土科學知能為例，如原住民族生活經驗或傳統生態知識具體示例，結合相關學習內容條目進行教學。</td>
</tr>
<tr>
<td></td>
<td>科學發展的歷史(Mb)</td>
<td>Mb-IV-2</td>
<td>科學史上重要發現的過程，以及不同性別、背景、族群者於其中的貢獻。</td>
<td>以湯姆森發現電子、拉瓦節提出質量守恆定律、拉塞福提出原子模型等，說明科學史上重要發現的過程。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mb-IV-3</td>
<td>科學發展的內容已融入次主題「物質組成與元素的週期性(Aa)」</td>
<td>科學發展的內容已融入次主題【能量與能源(Mb)】。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mb-IV-4</td>
<td>以湯姆森發現電子、拉瓦節提出質量守恆定律、拉塞福提出原子模型等，說明科學史上重要發現的過程。</td>
<td>擇例簡介化學科學家之貢獻與研究歷程，並兼顧不同族群、性別與背景。此內容應融入相關章節，不必另成一個單元。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mb-IV-5</td>
<td>以湯姆森發現電子、拉瓦節提出質量守恆定律、拉塞福提出原子模型等，說明科學史上重要發現的過程。</td>
<td>其他科學在生活中的應用已融入次主題物質的分離。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mb-IV-6</td>
<td>以湯姆森發現電子、拉瓦節提出質量守恆定律、拉塞福提出原子模型等，說明科學史上重要發現的過程。</td>
<td>生物仿生科技簡介。</td>
</tr>
<tr>
<td></td>
<td>科學在生活中的應用(Mc)</td>
<td>Mc-IV-3</td>
<td>生活中對各種材料進行加工與運用。</td>
<td>已於次主題物質組成與元素的週期性、次主題有機化合物的性質、製備及反應等介紹許多材料與運用方式。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mc-IV-4</td>
<td>常見人造材料的特性、簡單的製造過程在生活上的應用。</td>
<td>以塑膠、人造纖維及合金等說明常見人造材料的特性、簡單的製造過程及在生活上的應用。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>以塑膠、人造纖維等材料於次主題有機化合物的性質、製備及反應中介紹；合金則在次主題物質組成與元素的週期性中認識元素時介紹。</td>
<td>塑膠、人造纖維等材料於次主題有機化合物的性質、製備及反應中介紹；合金則在次主題物質組成與元素的週期性中認識元素時介紹。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>其他科學在生活中的應用已融入次主題物質組成與元素的週期性、次主題物質的分離。</td>
<td>以塑膠、人造纖維等材料於次主題有機化合物的性質、製備及反應中介紹；合金則在次主題物質組成與元素的週期性中認識元素時介紹。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>環境汙染與防治 (Me)</td>
<td>Me-IV-2</td>
<td>家庭廢水的影響與再利用。</td>
<td>與鑑定、次主題氧化與還原反應、次主題酸鹼反應、次主題化學反應速率與平衡、次主題有機化合物的性質、製備及反應等。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Me-IV-3</td>
<td>空氣品質與空氣汙染的種類、來源及一般防治方法。</td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>Me-IV-4</td>
<td>溫室氣體與全球暖化。</td>
<td></td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Me-IV-5</td>
<td>重金屬汙染的影響。</td>
<td></td>
<td>5-1</td>
</tr>
<tr>
<td>資源與永續發展 (N)</td>
<td>Na-IV-2</td>
<td>生活中節約能源的方法。</td>
<td>建議以資料蒐集、議題討論、論證式教學等方式進行。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Na-IV-3</td>
<td>環境品質繫於資源的永續利用與維持生態平衡。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Na-IV-4</td>
<td>資源使用的 5R：減量、拒絕、重複使用、回收及再生。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Na-IV-5</td>
<td>各種廢棄物對環境的影響，環境的承載能力與處理方法。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>能源的開發與利用 (Nc)</td>
<td>Nc-IV-2</td>
<td>開發任何一種能源都有風險，應依據證據來評估與決策。</td>
<td>已融入次主題有機化合物的性質、製備及反應。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Nc-IV-3</td>
<td>化石燃料的形成與特性。</td>
<td>以風能、太陽能、汽電共生、生質能、燃料電池等說明新興能源的開發。</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>以油電混合動力車、太陽能飛機等說明新興能源的科技。</td>
<td>3-1</td>
</tr>
</tbody>
</table>
物質系統

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質系統</td>
<td>宇宙與天體（Ed）</td>
<td>Ed-IV-1 星系是組成宇宙的基本單位。我們所在的星系，稱為銀河系，主要是由恆星所組成；太陽是銀河系的成員之一。</td>
<td>1-1 說明星系是恆星、氣體、塵埃等組成之巨大系統。 1-2 說明宇宙是由眾多星系所組成。 2-1 介紹銀河系是星系，太陽是銀河系中的一顆恆星。 2-2 說明夜晚仰望星空所看到的星星與銀河，幾乎都屬於銀河系。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ed-IV-2 星系是組成宇宙的基本單位。我們所在的星系，稱為銀河系，主要是由恆星所組成；太陽是銀河系的成員之一。</td>
<td>1-1 說明星系是恆星、氣體、塵埃等組成之巨大系統。 1-2 說明宇宙是由眾多星系所組成。 2-1 介紹銀河系是星系，太陽是銀河系中的一顆恆星。 2-2 說明夜晚仰望星空所看到的星星與銀河，幾乎都屬於銀河系。</td>
<td></td>
</tr>
</tbody>
</table>

地球環境

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>地球環境</td>
<td>組成地球的物質（Fa）</td>
<td>Fa-IV-1 地球具有大氣圈、水圈和岩石圈。大氣的主要成分為氮氣和氧氣，並含有水氣、二氧化碳等變動氣體。</td>
<td>1-1 統整介紹地球環境是由大氣圈、水圈、岩石圈組成。 1-2 說明水圈包含淡水和海水，並介紹水的分布。 1-3 說明岩石由礦物組成。 1-4 說明大氣圈為包覆地球外圍的空氣。 2-1 說明三大類岩石的形成過程和可辨識的特徵。 3-1 說明大氣的重要組成氣體及其特性。 4-1 說明大氣層的溫度隨高度而變化，並介紹各層的特性。 5-1 說明海水的主要成分及其特性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa-IV-2 大氣的主要成分為氮氣和氧氣，並含有水氣、二氧化碳等變動氣體。</td>
<td>1-1 統整介紹地球環境是由大氣圈、水圈、岩石圈組成。 1-2 說明水圈包含淡水和海水，並介紹水的分布。 1-3 說明岩石由礦物組成。 1-4 說明大氣圈為包覆地球外圍的空氣。 2-1 說明三大類岩石的形成過程和可辨識的特徵。 3-1 說明大氣的重要組成氣體及其特性。 4-1 說明大氣層的溫度隨高度而變化，並介紹各層的特性。 5-1 說明海水的主要成分及其特性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa-IV-3 大氣的主要成分為氮氣和氧氣，並含有水氣、二氧化碳等變動氣體。</td>
<td>1-1 統整介紹地球環境是由大氣圈、水圈、岩石圈組成。 1-2 說明水圈包含淡水和海水，並介紹水的分布。 1-3 說明岩石由礦物組成。 1-4 說明大氣圈為包覆地球外圍的空氣。 2-1 說明三大類岩石的形成過程和可辨識的特徵。 3-1 說明大氣的重要組成氣體及其特性。 4-1 說明大氣層的溫度隨高度而變化，並介紹各層的特性。 5-1 說明海水的主要成分及其特性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa-IV-4 大氣的主要成分為氮氣和氧氣，並含有水氣、二氧化碳等變動氣體。</td>
<td>1-1 統整介紹地球環境是由大氣圈、水圈、岩石圈組成。 1-2 說明水圈包含淡水和海水，並介紹水的分布。 1-3 說明岩石由礦物組成。 1-4 說明大氣圈為包覆地球外圍的空氣。 2-1 說明三大類岩石的形成過程和可辨識的特徵。 3-1 說明大氣的重要組成氣體及其特性。 4-1 說明大氣層的溫度隨高度而變化，並介紹各層的特性。 5-1 說明海水的主要成分及其特性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa-IV-5 大氣的主要成分為氮氣和氧氣，並含有水氣、二氧化碳等變動氣體。</td>
<td>1-1 統整介紹地球環境是由大氣圈、水圈、岩石圈組成。 1-2 說明水圈包含淡水和海水，並介紹水的分布。 1-3 說明岩石由礦物組成。 1-4 說明大氣圈為包覆地球外圍的空氣。 2-1 說明三大類岩石的形成過程和可辨識的特徵。 3-1 說明大氣的重要組成氣體及其特性。 4-1 說明大氣層的溫度隨高度而變化，並介紹各層的特性。 5-1 說明海水的主要成分及其特性。</td>
<td></td>
</tr>
</tbody>
</table>

地球與太空

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>地球與太空（Fb）</td>
<td>Fb-IV-1 太陽系由太陽和行星組成，行星均繞太陽公轉。</td>
<td>1-1 介紹太陽系是一個行星系統，除太陽外，主要是由行星所組成。</td>
<td>1-1 介紹太陽系是一個行星系統，除太陽外，主要是由行星所組成。 1-2 說明各行星在近乎相同之軌道面上，由西向东繞太陽運行。</td>
<td>1. 建議各層溫差或溫升的原因為補充教材或課堂中的延伸討論學習。 2. 建議此單元設計一個實作觀察活動，例如：岩石觀察。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Fb-IV-4</td>
<td>月相變化具有規律性。</td>
<td>直線上會發生日月食。</td>
<td>1-3 說明太陽系的四顆內行星，大小、質量和物質組成分與地球近似，稱之為類地行星。</td>
<td>設計小組活動，讓學生實際操作教具，探索日月地相對位置改變的同時所產生的月相變化，包含日月食。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-1 比較類地行星的環境資料，例如：表面溫度、大氣成分、大氣壓力，並說明其差異性。</td>
<td>2. 可使用教具（三球儀）或利用多媒體（影片或動畫）的具體呈現，引導學生了解月球繞地球公轉。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-2 地球之獨特性。 說明月球如何繞地球公轉。</td>
<td>3. 設計學習活動</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 介紹日食現象。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 以日、月、地之相對位置說明月相盈虧具有規律性變化。不涉及月亮升落時間和方位問題。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-2</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>地球的歷史 (II)</td>
<td>地層與化石 (Hb)</td>
<td>Hb-IV-1</td>
<td>研究岩層岩性與化石可幫助了解地球的歷史。</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hb-IV-2</td>
<td>解讀地層、地質事件，可幫助了解當地的地層發展先後順序。</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-1</td>
</tr>
<tr>
<td>變動的地球 (I)</td>
<td>地表與地殼的變動 (Ia)</td>
<td>Ia-IV-1</td>
<td>外營力及內營力的作用會改變地貌。</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ia-IV-2</td>
<td>岩石圈可分為數個板塊。</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ia-IV-3</td>
<td>板塊之間會相互分離或聚合，產生地震、火山和造山運動。</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ia-IV-4</td>
<td>全球地震、火山分布在特定的帶，且兩者相當吻合。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-2</td>
</tr>
</tbody>
</table>

（使用三球儀或黑白球或利用影片）導引學生了解月相盈虧。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>天氣與氣候變化（Ib）</td>
<td>Ib-IV-1</td>
<td>氣團是性質均勻的大型空氣團塊，性質各有不同。</td>
<td>4-1 利用全球地震和火山分布圖來說明兩者的相關性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib-IV-2</td>
<td>氣壓差會造成空氣的流動而產生風。</td>
<td>1-1 說明氣團的性質可依溫度、濕度、密度的不同而區分成不同種類的氣團。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib-IV-3</td>
<td>由於地球自轉的關係會造成高、低氣壓空氣的旋轉。</td>
<td>1-2 以臺灣為例，說明影響臺灣的氣團及其性質。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib-IV-4</td>
<td>鋒面是性質不同的氣團之交界面，會產生各種天氣變化。</td>
<td>2-1 說明氣壓的定義和單位。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib-IV-5</td>
<td>臺灣的災變天氣包括颱風、梅雨、寒潮、乾旱等現象。</td>
<td>2-2 說明氣壓差是造成空氣運動的原因。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ib-IV-6</td>
<td>臺灣秋冬春季受東北季風影響，夏季受西南季風影響，造成各地氣溫、風向和降水的季節性差異。</td>
<td>3-1 介紹影響空氣水平運動的因素。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 說明鋒面的種類及其天氣變化。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-2 不介紹囚錮鋒。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 透過各項天氣因子的變化，例如：氣溫、氣壓、降水量、風向、風速、相對溫度等，認識臺灣常見的幾種災變天氣，例如：梅雨、颱風、寒潮、乾旱等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-1 說明季風的成因。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-2 透過臺灣各地不同季節的氣溫、風向、降水情形說明季風對臺灣天氣的影響。</td>
<td></td>
</tr>
</tbody>
</table>

1. 建議教學時可請學生上網連結到中氣象局網站，查詢各項天氣因子的變化。例如：氣溫、氣壓、降水量、風向、風速、相對濕度等，進而做簡單分析。
2. 建議此單元設計實驗，例如：冷、暖空氣相遇。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>海水的運動（Ic）</td>
<td>Ic-IV-1</td>
<td>海水運動包含波浪、海流和潮汐，各有不同的運動方式。</td>
<td>1-1 介紹海水的各種運動方式。</td>
<td>3-1 在教材選編時儘量以圖表呈現。</td>
</tr>
<tr>
<td></td>
<td>Ic-IV-2</td>
<td>海流對陸地的氣候會產生影響。</td>
<td>2-1 說明海流對所流經地區氣候的影響。</td>
<td>3-2 可設計小組活動，搭配海洋資料，了解海流隨季節有所不同。</td>
</tr>
<tr>
<td></td>
<td>Ic-IV-3</td>
<td>臺灣附近的海流隨季節有所不同。</td>
<td>3-1 介紹臺灣附近的海流及其特徵。</td>
<td>4-1 搭配生活經驗或時事說明潮汐對生活的影響，例如：養殖漁業、養殖業。</td>
</tr>
<tr>
<td></td>
<td>Ic-IV-4</td>
<td>潮汐變化具有規律性。</td>
<td>3-2 介紹烏魚在冬季洄游南下的現象，說明海流流向隨季節有所不同。</td>
<td>4-2 舉例說明潮汐對生活的影響。</td>
</tr>
</tbody>
</table>

說明潮汐現象，例如：漲潮、退潮、滿潮、乾潮、潮差及潮汐週期。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>晝夜與季節（Id）</td>
<td>Id-IV-1</td>
<td>夏季白天較長，冬季黑夜較長。</td>
<td>1-1 說明地球自轉會造成晝夜交替現象。</td>
<td>石滬等。</td>
</tr>
<tr>
<td></td>
<td>Id-IV-2</td>
<td>陽光照射角度之變化，會造成地表單位面積土地吸收太陽能量的不同。</td>
<td>1-2 可用天球模型或星圖軟體模擬所在地點之日出或日落情形。</td>
<td>4-2 可透由小組活動蒐集潮汐漲退潮變化之資料，歸納分析潮汐變化具規律性。</td>
</tr>
<tr>
<td></td>
<td>Id-IV-3</td>
<td>地球的四季主要是因為地球自轉軸傾斜於地球公轉軌道面而造成。</td>
<td>1-3 以操作模型說明陽光直射北半球時，白晝較長、夜晚較短；照射南半球時白晝較短、夜晚較長。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-1 說明陽光直射斜射地面的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 說明地球自轉軸並非垂直於公轉軌道面。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 可用模型演示或影片說明季節的成因。</td>
<td>1-1 可用輔助光源（例如：手電筒）照射地球儀。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-2 可用星圖軟體（例如：Star Chart、Stellarium、星象</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>科學、技術及社會的互動關係（Ma）</td>
<td>Ma-IV-5</td>
<td>各種本土科學知能（含原住民族科學與世界觀）對社會、經濟環境及生態保護之啟示。</td>
<td>5-1 建議採用各種本土科學知能為例，如原住民族生活經驗或傳統生態知識具體示例，結合相關學習內容條目進行教學。</td>
</tr>
<tr>
<td>科學發展的歷史（Mb）</td>
<td></td>
<td>Mb-IV-2</td>
<td>科學史上重要發現的過程，以及不同性別、背景、族群者於其中的貢獻。</td>
<td>2-1 擇例簡介科學家之貢獻與研究歷程，並兼顧不同族群、性別與背景。此內容應融入相關章節，不必另成一個單元。</td>
</tr>
<tr>
<td>天然災害與防治（Md）</td>
<td>Md-IV-2</td>
<td>颱風主要發生在七至九月，並容易造成生命財產的損失。</td>
<td>2-1 說明颱風主要發生在夏、秋兩季。可舉實例說明颱風造成的災害，並介紹防颱的應變措施。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Md-IV-3</td>
<td>颱風會帶來狂風、豪雨及暴潮等災害。</td>
<td>2-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Md-IV-4</td>
<td>臺灣位處於板塊交界，因此地震頻仍，常造成災害。</td>
<td>3-1 說明颱風侵襲前後之風和雨的變化。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Md-IV-5</td>
<td>颱風過後和順向坡會加重山崩的威</td>
<td>3-2</td>
<td>介紹不同路段的颱風對臺灣風雨分布的影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>威</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. 可用輔助光源（例如：手電筒）實作光線與地面夾角不同時，單位面積的亮度會隨入射角而變。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>資源與永續發展(N)</td>
<td>永續發展與資源的利用(Na)</td>
<td>Na-IV-6 人類社會的發展必須建立在保護地球自然環境的基礎上。為使地球永續發展，可以從減量、回收、再利用、綠能等做起。</td>
<td>6-1 說明人類活動會改變環境，這種改變可能破壞自然環境。 6-2 透過時事說明及探討人類活動對環境造成的衝擊。 6-3 介紹保護地球自然環境的方法與可行的策略。 7-1 說明永續發展的定義。 7-2 介紹資源的種類及其用途，並舉例說明使用資源的正確概念與方法。</td>
<td>1. 環境汙染與防治。 2. 生物與環境的交互作用。 3. 能源的開發與利用。 4. 科學、技術及社會的互動關係。 5. 建議透過小組活動蒐集資料，討論能使地球永續發展的可行方</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na-IV-7 人類社會的發展必須建立在保護地球自然環境的基礎上。為使地球永續發展，可以從減量、回收、再利用、綠能等做起。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>氣候變遷之影響與調適（Nb）</td>
<td>Nb-IV-2</td>
<td>氣候變遷產生的衝擊有海平面上升、全球暖化、異常降水等現象。</td>
<td>1. 介紹溫室效應及其與全球暖化的關係。</td>
<td>1. 此單元應搭配生活經驗或時事說明。</td>
</tr>
<tr>
<td></td>
<td>Nb-IV-3</td>
<td>因應氣候變遷的方法有減緩與調適。</td>
<td>2-1 以長期全球溫度的時間序列圖說明氣候變遷中全球暖化的現況。</td>
<td>2. 人類活動對環境造成的衝擊，例如：超抽地下水的災害，以及地下層無法恢復的衝擊等。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-2 以近年來海平面高度變化的時間序列說明氣候變遷中海平面上升的情況。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-3 以近年來降水變化的時間序列說明氣候變遷中降水的情況。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4 說明減緩的定義是減少溫室氣體排放的速度與數量，並舉例說明減碳的方法。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 說明調適的定義是調整生活與行為的方式來適應氣候變遷造成的衝擊，並舉例說明。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 說明調適的定義是調整生活與行為的方式來適應氣候變遷造成的衝擊，並舉例說明。</td>
<td></td>
</tr>
</tbody>
</table>

6. 人類活動對環境造成的衝擊，例如：超抽地下水的災害，以及地下層無法恢復的衝擊等。
（五）國民中學跨科主題

1. 跨科主題：從原子到宇宙

<table>
<thead>
<tr>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然界的尺度與單位 (Ea)</td>
<td>宇宙間事、物的規模可以分為微觀尺度與巨觀尺度。</td>
<td>進行科學探討時，會在各種不同的規模、尺度下，以系統思維來理解及表徵宇宙間的事與物，認識宇宙的尺度是科學思考中很重要的一環，建議在生物課程中能以此議題設計成一單元的課程，建構尺度的整體觀，而理化與地球科學則在以各學科為主的次主題中，融入系統與尺度的相關概念。</td>
<td>配合生物課程在七年級實施。</td>
</tr>
<tr>
<td>細胞的構造與功能 (Da)</td>
<td>對應不同尺度，各有適用的單位（以長度單位為例），尺度大小可以使用科學記號來表達。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物溫的組成 (Fc)</td>
<td>測量時要選擇適當的尺度。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地球與太空 (Fb)</td>
<td>不同物體間的尺度關係可以用比例的方式來呈現。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>原子與分子是組成生命世界與物質世界的微觀尺度。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>從個體到生物圈是組成生命世界的巨觀尺度。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INc-IV-1</td>
<td>宇宙間事、物的規模可以分為微觀尺度與巨觀尺度。</td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td>INc-IV-2</td>
<td>對應不同尺度，各有適用的單位（以長度單位為例），尺度大小可以使用科學記號來表達。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INc-IV-3</td>
<td>測量時要選擇適當的尺度。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INc-IV-4</td>
<td>不同物體間的尺度關係可以用比例的方式來呈現。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INc-IV-5</td>
<td>原子與分子是組成生命世界與物質世界的微觀尺度。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INc-IV-6</td>
<td>從個體到生物圈是組成生命世界的巨觀尺度。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. 跨科主題：能量與能源

<table>
<thead>
<tr>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量的形式與轉換（Ba）</td>
<td>1Na-IV-1</td>
<td>能量有多種不同的形式。</td>
<td>配合理化課程在八、九 年級實施。</td>
</tr>
<tr>
<td>溫度與熱量（Bb）</td>
<td>1Na-IV-2</td>
<td>能量之間可以轉換，且會維持定值。</td>
<td></td>
</tr>
<tr>
<td>生物體內的能量與代謝（Bc）</td>
<td>1Na-IV-3</td>
<td>科學的發現與新能源，及其對生活與社會的影響。</td>
<td></td>
</tr>
<tr>
<td>生態系中能量的流動與轉換（Bd）</td>
<td>1Na-IV-4</td>
<td>生活中各種能源的特性及其影響。</td>
<td></td>
</tr>
<tr>
<td>科學、技術及社會的互動關係（Ma）</td>
<td>1Na-IV-5</td>
<td>能源開發、利用及永續性。</td>
<td></td>
</tr>
<tr>
<td>科學在生活中的應用（Mc）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>備註</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>電流的現象，可以用來製作發電機；愛因斯坦發現了光電效應，可以用來製作太陽能電池等。</td>
<td>4-1 了解生活中不同能源的特性，包含能源的再生、非再生、穩定性及其可能造成的汙染等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>探討生活中新能源開發的可能性、節能省碳的效率及能源開發利用的永續性。</td>
<td>5-1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>地球上各系統的能量主要來源是太陽，且彼此之間有流動轉換。</td>
<td>1-1 複習前階段「能量的形式、轉換及流動」的相關知識，尤其強調能量有不同形式，例如：熱能與光能，而且說明其彼此間可以轉換。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>大気組成中的變動氣體有些是溫室氣體。</td>
<td>2-1 介紹自然界中主要的溫室氣體，例如：水氣、二氧化碳及甲烷等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>不同物質受熱後，其溫度的變化可能不同。</td>
<td>3-1 說明每種溫室氣體對熱能的捕獲率不同，對全球暖化的貢獻程度也不同。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>碳元素在自然界中的儲存與流動。</td>
<td>4-1 結合日常生活議題，例如：碳足跡，用電量轉換成二氧化碳排放量等，了解碳元素在自然界會出現在不同物質中，且可循環使用。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>生物活動會改變環境，環境改變之後也會影響生物活動。</td>
<td>5-1 人類活動也會改變環境，也可能影響其他生物的存在；而環境改變也會影響生物（包含人類）的活動，例如：氣候變遷造成生物多樣性的變化、可耕地的改變等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>新興科技的發展對自然環境的影響。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>溫室氣體與全球暖化的關係。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>氣候變遷產生的衝擊是全球性的。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>因應氣候變遷的方法，主要有</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. 跨科主題：全球氣候變遷與調適

<table>
<thead>
<tr>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量的形式與轉換（Ba）</td>
<td>地球上各系統的能量主要來源是太陽，且彼此之間有流動轉換。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>溫度與熱量（Bb）</td>
<td>大気組成中的變動氣體有些是溫室氣體。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>生態系中能量的流動與轉換（Bd）</td>
<td>不同物質受熱後，其溫度的變化可能不同。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物與環境的交互作用（Lb）</td>
<td>碳元素在自然界中的儲存與流動。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境汙染與防治（Me）</td>
<td>生物活動會改變環境，環境改變之後也會影響生物活動。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>氣候變遷之影響與調適（Nb）</td>
<td>新興科技的發展對自然環境的影響。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>溫室氣體與全球暖化的關係。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>氣候變遷產生的衝擊是全球性的。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>因應氣候變遷的方法，主要有</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料的形態與轉換（Ma）</td>
<td>地球上各系統的能量主要來源是太陽，且彼此之間有流動轉換。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>科學、技術及社會的互動關係（Mc）</td>
<td>大気組成中的變動氣體有些是溫室氣體。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境汙染與防治（Me）</td>
<td>不同物質受熱後，其溫度的變化可能不同。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>碳元素在自然界中的儲存與流動。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>生物活動會改變環境，環境改變之後也會影響生物活動。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>新興科技的發展對自然環境的影響。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>溫室氣體與全球暖化的關係。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>氣候變遷產生的衝擊是全球性的。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>因應氣候變遷的方法，主要有</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

本跨科主題在九年級配合地球科學課程實施，以當前人類所面對的「全球氣候變遷與調適」為議題，統整地球科學、生物、理化等相關之科學概念，發展合適的學習活動。
<table>
<thead>
<tr>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>減緩與調適兩種途徑。</td>
<td>6-1 介紹人類活動、各種發電方式及新興科技的發展對環境與生態的影響，同時產出大量溫室氣體，並造成各地氣溫記錄屢創新高。 7-1 利用溫室氣體長期變化資料，說明其與全球暖化的關係。 8-1 全球暖化之後，接踵而至的是南北極冰面積不斷縮小、海平面上升、大氣循環模式或強度改變，進而導致降雨形態改變；碳循環速率改變，影響碳平衡，生態系改變，棲地遷徙或消失，最終會改變生物的多樣性。 9-1 因應氣侯變遷的方法有減緩與調適。 9-2 說明減緩的定義並舉例說明，例如：減碳的方法或改善交通運輸工程。 9-3 說明調適的定義並舉例說明，例如：災害與水資源的調適方法可採用海綿城市的建構，糧食危機的調適方法可預先收藏糧種或建立種子銀行。</td>
<td></td>
</tr>
</tbody>
</table>
三、高级中学教育阶段（第五学习阶段）

（一）生物

1. 普通型高级中等学校必修课程

普通型高级中等学校必修生物的课程衔接国民中学教育阶段（第四学习阶段）的生物学概念与相关跨科概念，以发展系统性的生物学概念，可衔接探究与实习、选修生物的课程，让学习依自己的兴趣进行发展与生涯规划。学习内容主要有三项次主题，分别为「细胞的构成与功能」、「遗传」及「演化」，最后以生物多样性做总结。教学时，应适度择例简介生物科学家之贡献与研究历程，并兼顾不同性别、族群或背景。此部分可融入相关章节，不必另成一个单元。

课程纲要分为主题、次主题、学习内容、学习内容说明及参考节数五项，作为教材编辑与教学选材之依据。教材编辑者或教师在编辑教材或进行教学时，可依课程发展之理念自订章节名称与顺序。「学习内容说明」主要在适度规範教材编辑与教学选材内容的深度与广度。

<table>
<thead>
<tr>
<th>主题</th>
<th>次主题</th>
<th>学习内容</th>
<th>学习内容说明</th>
<th>参考节数</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物体的</td>
<td>BDa-Vc-1</td>
<td>不同的细胞具有不同的功能、形态及构造。</td>
<td>1-1 可以折撕法、压片法、抹片法及徒手切片等方法，制作水载玻片标本。藉由观察不同的细胞，体会不同功能的细胞具有不同的形态与构造。【探讨活动】</td>
<td>12.5-13.5节</td>
</tr>
<tr>
<td>深入认识</td>
<td>BDa-Vc-2</td>
<td>原核细胞与真核细胞的构成与功能。</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDa-Vc-3</td>
<td>ATP 是提供细胞生理作用所需能量的直接来源。</td>
<td>2-1 简介原核细胞与真核细胞的基本构成。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDa-Vc-4</td>
<td>光合作用与呼吸作用的能量转换关系。</td>
<td>2-2 简介真核细胞内具有多样的构造，以进行</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>BDa- Vc-5</td>
<td>真核細胞的細胞週期包括間期與細胞分裂期。</td>
<td>不同的功能。</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>BDa- Vc-6</td>
<td>真核細胞的細胞分裂。</td>
<td>簡介細胞質中的構造包括內質網、高基氏體、液泡、核糖體、粒線體及葉綠體。</td>
<td>2-4</td>
<td></td>
</tr>
<tr>
<td>BDa- Vc-7</td>
<td>有絲分裂的過程。</td>
<td>藉由真核細胞模型的操作、觀察與解說，綜合所學知識與技能，理解整體細胞中各構造的功能與關聯。</td>
<td>3-1</td>
<td></td>
</tr>
<tr>
<td>BDa- Vc-8</td>
<td>動物生殖細胞一般須經過減數分裂的過程形成配子。</td>
<td>說明ATP可以提供細胞生理作用所需能量，不涉及ATP分子結構式。</td>
<td>4-1</td>
<td></td>
</tr>
<tr>
<td>BDa- Vc-9</td>
<td>多細胞生物的受精卵經由有絲分裂與細胞分化的過程形成不同類型的細胞。</td>
<td>從細胞層次，探討光合作用可將光能轉變為化學能，並貯存在有機物中；細胞可利用有機物中的化學能進行新陳代謝。</td>
<td>4-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-1</td>
<td></td>
</tr>
</tbody>
</table>

簡介細胞質中的構造包括內質網、高基氏體、液泡、核糖體、粒線體及葉綠體。藉由真核細胞模型的操作、觀察與解說，綜合所學知識與技能，理解整體細胞中各構造的功能與關聯。說明ATP可以提供細胞生理作用所需能量，不涉及ATP分子結構式。從細胞層次，探討光合作用可將光能轉變為化學能，並貯存在有機物中；細胞可利用有機物中的化學能進行新陳代謝。主要在探討光合作用與呼吸作用在能量轉換之關係，重點不是在討論光合作用與呼吸作用的機制。光合作用與呼吸作用的機制，宜在選修生物中探討。間期與細胞分裂期不得再細分各時期。簡介真核細胞的細胞分裂包括細胞核分裂與細胞質分裂，細胞核分裂可分為有絲分裂與減數分裂兩類型。藉由觀察有絲分裂的玻片標本中，知道有絲分裂的過程中，染色體具有變化的情形。【探討活動】不得區分有絲分裂過程中的前、中、後及未期各期。以人體的生殖細胞為例，說明減數分裂與配子形成的過程。簡介細胞分化。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>演化與延續（G）</td>
<td>生殖與遺傳（Ga）</td>
<td>BGa-Ⅴc-1</td>
<td>孟德爾遺傳法則中，性狀與遺傳因子之關係。</td>
<td>1-1 說明孟德爾遺傳法則中的遺傳因子，是藉由性狀推論出來的抽象名詞。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Ⅴc-2</td>
<td>孟德爾遺傳法則的延伸。</td>
<td>2-1 可以ABO血型為例，說明共顯性遺傳與複等位基因遺傳。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Ⅴc-3</td>
<td>遺傳的染色體學說之發展歷程。</td>
<td>2-2 可以人體的膚色為例，說明多基因遺傳，但不涉及計算。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Ⅴc-4</td>
<td>性聯遺傳。</td>
<td>3-1 以遺傳的染色體學說之推論歷程，說明遺傳現象與染色體的關係。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Ⅴc-5</td>
<td>遺傳物質為核酸。</td>
<td>3-2 說明遺傳因子是位於染色體，不再只是抽象的名詞，具有實體的性質，可以遺傳與控制性狀。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Ⅴc-6</td>
<td>分子遺傳學的中心法則。</td>
<td>4-1 說明性聯遺傳，可以人類紅綠色盲為例。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Ⅴc-7</td>
<td>同一性狀具有不同的表徵。</td>
<td>5-1 核酸中的DNA可承載傳達訊息。DNA的粗萃取，避免使用雞血為材料。【探討活動】</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5-2 每段DNA分子上有許多基因。不涉及DNA的分子結構式。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6-1 說明分子遺傳學的中心法則之概念。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6-2 簡介DNA的複製過程，不涉及機制。除聚合酶外，不涉及其他酶與蛋白質的名稱或作用。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6-3 簡介轉錄與轉譯的過程，不涉及機制與基因表現的調控。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6-4 可延伸認識Barbara McClintock（芭芭拉·麥克林塔克）在基因研究的重要貢獻之發展歷程。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7-1 不同的表徵是因為遺傳變異所造成。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7-2 性狀表現受環境因子的影響。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>演化（Gb）</td>
<td>BGb-Vc-1</td>
<td>生物性狀的表徵比例會變動。</td>
<td>1-1 可以英國胡椒蛾的體色為例，探討性狀的表徵比例可隨著環境與時間的變化而變動。【探討活動】</td>
<td>6.5 節</td>
</tr>
<tr>
<td></td>
<td>BGb-Vc-2</td>
<td>達爾文的演化理論。</td>
<td>2-1 說明共同祖先的概念與演化理論的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BGb-Vc-3</td>
<td>共同祖先的概念對生物分類系統之影響。</td>
<td>2-2 說明天擇的概念與演化理論的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BGb-Vc-4</td>
<td>演化證據對生物分類系統演變之影響。</td>
<td>3-1 以林奈的生物分類系統為例，說明早期的生物分類系統不具親源關係與演化的概念。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BGb-Vc-5</td>
<td>在地球上的生物經演化過程而形成目前的生物多樣性。</td>
<td>3-2 說明共同祖先的概念對生物分類系統之影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 基於共同祖先的概念，探討依據演化證據，可重建生物間的親緣關係，可以鳥類與爬蟲類的親緣關係為例。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-2 說明親緣關係的重建對生物分類系統演變的影響，可以五界分類系統調整為三域分類系統為例。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-3 說明生物分類系統的調整與演變能更符合生物演化史中真實的親緣關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-4 探討病毒在分類系統中的歸類問題。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 生物不斷演化，物種持續出現或滅絕，形成目前的生物多樣性。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>學科發展的歷史</th>
<th>學科內容</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>BMb-Vc-1</td>
<td>細胞學說的發展歷程。</td>
<td>1-1 藉由探討細胞學說的發展，了解學說形成的科學歷程及細胞學說的重要性。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>BMb-Vc-2</td>
<td>孟德爾依據實驗結果推論遺傳現象的規律性。</td>
<td>1-2 學習內容可與次主題「細胞的構造與功能」整合，以達到概念的完整性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMb-Vc-3</td>
<td>性染色體的發現。</td>
<td>2-1 說明孟德爾的遺傳實驗過程，以了解孟德爾實驗設計的思考過程，並探討遺傳法則的推論歷程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMb-Vc-4</td>
<td>演化觀念的形成與發展。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. 普通型高級中等學校選修課程

普通型高級中等學校生物科目「選修生物」課程之設計理念與課程架構如下：
（1）重視生物學的概念發展與連貫統整，強調核心概念之學習，並建立科學模型與理論之系統性思考方式。
（2）增加實作與探究的探討活動、科學模型與理論之發展歷程，以及科學、技術及社會的互動關係之課程設計。
（3）連貫必修生物的課程，進入加深加廣的階段，以銜接大學教育階段的相關課程。
普通型高级中等学校加深加广选修生物为8学分，内容规划如下：

<table>
<thead>
<tr>
<th>科目</th>
<th>課程名稱</th>
<th>學分</th>
</tr>
</thead>
<tbody>
<tr>
<td>選修生物</td>
<td>細胞與遺傳</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>生命的起源與植物體的構造與功能</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>動物體的構造與功能</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>生態、演化及生物多樣性</td>
<td>2</td>
</tr>
</tbody>
</table>

課程綱要分為主題、次主題、學習內容、學習內容說明及參考節數等五項，以做為教材編輯與教學選材之依據。教材編輯者或教師於編撰教材進行教學時，可依課程發展理念暨教學需要而自訂章節名稱與順序。「學習內容說明」主要是在適度規範教材編輯暨教學選材內容之深度與廣度。

課程名稱：細胞與遺傳

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物體的構造與功能（D）</td>
<td>BDa-Va-1</td>
<td>細胞的分子構成。</td>
<td>1-1 說明水分在生物體中的功能。</td>
<td>15-16 節</td>
</tr>
<tr>
<td></td>
<td>BDa-Va-2</td>
<td>生物膜的構造與功能。</td>
<td>1-2 藉由還原醣、脂肪及蛋白質的檢測方法探討生物組織中的組成成分。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDa-Va-3</td>
<td>酶的功能與影響酶活性的因素。</td>
<td>1-3 說明醣類、蛋白質、核酸、脂質、礦物質及維生素的功能。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDa-Va-4</td>
<td>呼吸作用包括有氧呼吸、無氧呼吸及醇酵作用。</td>
<td>2-2 藉由觀察植物細胞的質壁分離現象，探討膜的通透性。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDa-Va-5</td>
<td>能量流轉與生命維持的關係。</td>
<td>2-3 說明膜蛋白的功能。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDa-Va-6</td>
<td>細胞的生命歷程。</td>
<td>2-4 說明跨膜運輸與主動運輸等跨膜運輸，不涉及次級主動運輸。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-5 說明胞吞作用與胞吐作用。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-6 說明內膜系統的組成與功能。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 藉由測定酶的活性探討影響酶活性的因素。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 說明酶的功能與作用機制。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 藉由觀察酵母菌的醇酵現象，探討影響醇酵速率的因子。【探討活動】</td>
<td></td>
</tr>
</tbody>
</table>

170
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>演化與延續 (G)</td>
<td>生殖與遺傳 (Ga)</td>
<td>BGa-Va-1</td>
<td>遺傳的染色體學說的建立。確認DNA為遺傳物質的歷程。</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-2</td>
<td>遺傳訊息的複製。</td>
<td>4-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-3</td>
<td>遺傳訊息的轉錄與轉譯。</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-4</td>
<td>基因表現的調控。</td>
<td>6-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-5</td>
<td>遺傳變異。</td>
<td>6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-6</td>
<td>生物科技的應用。</td>
<td>6-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGa-Va-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>科學、技術及社會的互動關係（Ma）</td>
<td>BMc-Va-1</td>
<td>生物科技的應用。 探討人類基因組計畫及其意義與重要性。</td>
<td>7-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMa-Va-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>科學發展的歷史（Mb）</td>
<td></td>
<td>BMb-Va-1</td>
<td>從科學史的觀點，探討生物膜的模型之發展歷程。</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMb-Va-3</td>
<td>從科學史的觀點，說明遺傳的染色體學說之發展歷程。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMb-Va-4</td>
<td>從科學史的觀點，探討聯鎖的相關實驗與推論。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMb-Va-5</td>
<td>從科學史的觀點，探討確認DNA為遺傳物質之發展歷程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMb-Va-6</td>
<td>從科學史的觀點，探討DNA分子結構模型之發展歷程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMb-Va-7</td>
<td>從科學史的觀點，探討DNA複製為半保留複製模式之發展歷程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>可與次主題「細胞的構造與功能」項下之BDa-Va-2生物膜的構造與功能整併，以達到概念的完整性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>可與次主題「生殖與遺傳」項下之BGa-Va-7遺傳的染色體學說的建立整併，以達到概念的完整性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>課程名稱：生命的起源與植物體的構造與功能</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>演化與延續（G）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>次主題</td>
<td>演化（Gb）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容</td>
<td>BGb-Va-1 生源說與無生源說的爭論歷程。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BGb-Va-2 從無機物到有機物的演變，探討生物起源的過程。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BGb-Va-3 原核細胞形成的演化歷程。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BGb-Va-4 真核細胞形成的演化歷程。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>學習內容說明</td>
<td>1-1 說明生物起源的主要假說：生源說與無生源說的內容。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-2 藉由生源說與無生源說的爭論歷程，探討科學論證的實證精神。可以下述為例：雷迪的腐肉生蛆實驗過程；雷文霍克發現顯微鏡下生物的事件對生物起源論證之影響；乾草浸液所引起的爭議；喬伯羅與生源說的內容與證據；尼丹與斯巴蘭贊尼爭論的內容與證據；浦歇與巴斯德爭論的內容與證據。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>參考節數</td>
<td>6 節</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物體的構造與功能</td>
<td>動植物體的構造與功能（Db）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-9 植物體的組成層次。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-10 植物的光合作用包括光反應與固碳反應。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-11 植物的生殖。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-12 植物體內的物質運輸。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-13 植物激素會調節植物體的生理作用。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-14 植物體對環境刺激的反應。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1</td>
<td>藉由觀察不同植物組織的玻片標本，了解不同植物組織具有不同形態與功能的細胞。【探討活動】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-2</td>
<td>說明植物體的外部形態具有根、莖及葉等營養器官，生殖器官具有花、果實及種子；花可發育為果實，果實內有種子。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-3</td>
<td>藉由觀察植物體的根、莖及葉的形態與構造，探討植物體的形態、構造及功能，並</td>
<td>23-25 節</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>比較水生植物與陸生植物的構造差異</td>
<td>9-4</td>
<td>藉由觀察植物體的花與果實的形態與構造，探討被子植物花與果實之多樣性。【探討活動】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-5</td>
<td>說明植物體內部構造，了解植物體具有細胞、組織及組織系統等組成層次。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-1</td>
<td>藉由層析法分離光合色素，知道植物具有多種光合色素。【探討活動】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-2</td>
<td>藉由葉綠體的懸浮液，探討光反應的還原作用。【探討活動】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-3</td>
<td>從科學史的觀點，探討光、水及二氧化碳在光合作用的重要性。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-4</td>
<td>說明光合作用可將光能轉換成化學能，不涉及四碳光合作用與景天酸代謝光合作用。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-1</td>
<td>說明植物細胞的全能性。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-2</td>
<td>說明被子植物的無性生殖。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-3</td>
<td>說明被子植物的有性生殖。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-4</td>
<td>說明種子的萌發與幼苗的生長。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td>說明植物體對水與礦物質的吸收。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-2</td>
<td>說明植物體內水與礦物質的運輸。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-3</td>
<td>說明植物體內有機養分的運輸。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-1</td>
<td>從科學史的觀點，探討生長素發現過程的相關實驗，學習發現問題與設計實驗，練習經由實驗證據做出結論。【探討活動】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-2</td>
<td>探討植物激素影響植物體的生長發育過程，以下述為例：離層素與吉貝素可影響種子的休眠與萌發；吉貝素可促進矮性植生長。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>生物體的構造與功能（D）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>動植物體的構造與功能（Db）</td>
<td>BDb-Va-1</td>
<td>動物組織的構造與功能。</td>
<td>1-1 藉由觀察不同動物組織的玻片標本，了解不同動物組織具有不同形態與功能的細胞。【探討活動】</td>
<td>30-32 節</td>
</tr>
<tr>
<td></td>
<td>BDb-Va-2</td>
<td>動物體的器官系統之構造與功能。</td>
<td>1-2 說明動物體的上皮組織、結締組織、肌肉組織及神經組織之構造與功能。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-3</td>
<td>動物體內恆定的生理意義與重要性。</td>
<td>2-1 說明食物的消化過程與營養素的吸收方式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-4</td>
<td>動物體對刺激的感應。</td>
<td>2-2 藉由觀察心臓的構造，探討心臓在血液循環的功能。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-5</td>
<td>動物體的神經系統對生理作用的調節。</td>
<td>2-3 藉由呼吸運動模型，探討呼吸運動的原理。不涉及調控與氣體交換。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-6</td>
<td>動物體的激素對生理作用的調節。</td>
<td>2-4 藉由觀察腎臓的構造與組織切片，探討腎臟的排泄功能與尿液的形成。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-7</td>
<td>動物體的防禦構造與功能。</td>
<td>2-5 藉由觀察雞翅的構造，探討骨骼與肌肉的運作方式。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BDb-Va-8</td>
<td>動物體的生殖與胚胎發育。</td>
<td>2-6 藉由觀察蛙的外部形態與內部構造，探討</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>動物體的形態與構造，並說明動物體中，不同的器官系統具有不同的構造與功能。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>【探討活動】</td>
<td></td>
</tr>
<tr>
<td>3-1</td>
<td></td>
<td></td>
<td>以血糖的恆定為例，說明動物體內環境的恆定與重要性。</td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td></td>
<td></td>
<td>說明回饋控制是動物體內維持恆定性的基本模式。</td>
<td></td>
</tr>
<tr>
<td>4-1</td>
<td></td>
<td></td>
<td>說明環境對動物體的刺激類型，包括光、聲波、化學分子、溫度及機械力等。</td>
<td></td>
</tr>
<tr>
<td>4-2</td>
<td></td>
<td></td>
<td>說明不同類型的刺激，可活化不同類型的受體。</td>
<td></td>
</tr>
<tr>
<td>4-3</td>
<td></td>
<td></td>
<td>說明動物體的生理作用受電訊號與化學訊號的調節。</td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td></td>
<td></td>
<td>說明細胞膜具有膜電位，不涉及膜電位的形成機制。</td>
<td></td>
</tr>
<tr>
<td>5-2</td>
<td></td>
<td></td>
<td>說明神經細胞的膜電位可瞬間改變，所形成的電訊號可在細胞膜傳遞。</td>
<td></td>
</tr>
<tr>
<td>5-3</td>
<td></td>
<td></td>
<td>說明神經元間的訊號傳遞。</td>
<td></td>
</tr>
<tr>
<td>5-4</td>
<td></td>
<td></td>
<td>說明神經細胞對動器的調控作用。</td>
<td></td>
</tr>
<tr>
<td>5-5</td>
<td></td>
<td></td>
<td>以自律神經對心搏速率的調控為例，說明神經系統對生理作用的調節。</td>
<td></td>
</tr>
<tr>
<td>6-1</td>
<td></td>
<td></td>
<td>以腎上腺素的作用為例，說明生理作用受化學訊號的調節。</td>
<td></td>
</tr>
<tr>
<td>6-2</td>
<td></td>
<td></td>
<td>說明激素如何作用於細胞膜上或細胞內的受體，以影響細胞的生理活動，不涉及第二傳訊者的分子機制。</td>
<td></td>
</tr>
<tr>
<td>6-3</td>
<td></td>
<td></td>
<td>以下視丘對甲狀腺素分泌的調節為例，說明回饋控制。</td>
<td></td>
</tr>
<tr>
<td>7-1</td>
<td></td>
<td></td>
<td>以人體為例，說明動物體的防禦構造與功</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>能。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-2 說明吞噬作用與發炎反應等先天性免疫。</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-3 說明體液免疫與細胞媒介型免疫等後天性免疫。</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-4 藉由ABO血型的鑑定，探討抗原與抗體的反應。【探討活動】</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-5 說明疫苗的功能。</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-6 說明過敏反應、排斥作用、自體免疫疾病及免疫缺失等免疫失調。</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-1 藉由觀察生殖腺與生殖細胞，探討配子的形成過程。【探討活動】</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-2 以人體為例，說明配子的形成。</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-3 以人體為例，說明受精過程。</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-4 以人體為例，說明胚胎的發育過程。</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>科學、科技、社會與人文 (M)</th>
<th>科學、技術及社會的互動關係 (Ma)</th>
<th>BMa-Va-1 探討代理孕母的倫理與法律問題。</th>
<th>1-1 可與次主題「動物體的構造與功能」項下之BDb-Va-8動物體的生殖與胚胎發育整併，以達到概念的完整性。</th>
</tr>
</thead>
</table>

<p>| 課程名稱：生態、演化及生物多樣性 |</p>
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>演化與延續 (G)</td>
<td>演化 (Gb)</td>
<td>BGb-Va-5 現代生物演化理論。</td>
<td>5-1 說明現代生物演化理論之發展歷程。</td>
<td>8 節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGb-Va-6 族群遺傳學。</td>
<td>5-2 說明現代綜合論與中性演化理論。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGb-Va-7 演化與物種形成。</td>
<td>6-1 說明基因庫與等位基因的頻率。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-2 藉由鐮形血球性狀的等位基因頻率之變化，探討天擇作用。【探討活動】</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-3 說明等位基因頻率變化對族群演化的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-4 說明哈溫平衡，並探討影響等位基因頻率</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>生物與環境</td>
<td>生物與環境的交互作用 (Lb)</td>
<td>BLb-Va-1 生態學的研究層級。族群特徵包括族群大小、族群密度、族群成長曲線及年齡結構等。</td>
<td>1-1 說明生態學的研究層級主要為個體、族群、群集、生態系及生物圈。</td>
<td>10.5-11.5 節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLb-Va-2</td>
<td>族群大小或族群密度隨時間的變化,可繪製成族群成長曲線,該曲線不涉及數學模式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLb-Va-3 群集中族群間的交互作用、群集結構及演替。</td>
<td>2-2 說明族群大小或族群密度隨時間的變化,可繪製成族群成長曲線,該曲線不涉及數學模式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLb-Va-4 生態系中的非生物因子與生物因子、能量流轉及元素循環。</td>
<td>2-3 說明族群的生存曲線代表族群在不同階段的生存適應狀況。</td>
<td></td>
</tr>
</tbody>
</table>

- 參考節數：7-1 說明隔離對物種形成的重要性。
- 參考節數：7-2 可以臺灣的山椒魚為例,說明異域種化。
- 參考節數：7-3 可以植物的多倍體為例,說明同域種化。
- 參考節數：7-4 說明形態種與生物種的物種定義,並探討其適用問題。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物多樣性（Gc）</td>
<td>BGC–Va-1</td>
<td>生物多樣性包含遺傳多樣性、物種多樣性及生態系多樣性三個面向。</td>
<td>食物鏈，相關的食物鏈可進一步連接成食物網。</td>
<td>4-4</td>
</tr>
<tr>
<td></td>
<td>BGC–Va-2</td>
<td>遺傳多樣性。</td>
<td>說明生物可依能量獲得方式，分為生產者、消費者及分解者三大類，生產者與消費者可區分為不同的營養階層。</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>BGC–Va-3</td>
<td>物種多樣性。</td>
<td>說明能量在營養階層間的流轉狀況。</td>
<td>4-6</td>
</tr>
<tr>
<td></td>
<td>BGC–Va-4</td>
<td>生態系多樣性。</td>
<td>說明能量在營養階層間的流轉狀況可繪製成能量塔，以了解生態系中能量的利用情況。</td>
<td>4-7</td>
</tr>
<tr>
<td></td>
<td>BGC–Va-5</td>
<td>造就臺灣生物多樣性的因素。</td>
<td>說明元素循環，僅介紹碳循環與氮循環。</td>
<td>4-8</td>
</tr>
<tr>
<td></td>
<td>BGC–Va-6</td>
<td>生物多樣性的保育。</td>
<td>說明碳循環的主要過程：碳從生產者傳遞至消費者與分解者，二氧化碳釋入大氣與海洋。生</td>
<td>4-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>產者吸收大氣與海洋的二氧化碳；並探討燃燒化石燃料對碳循環的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明氮循環的主要過程：氮從生產者傳遞至消費者與分解者，氮進入土壤及氮從土壤中移出；並探討農業使用氮肥對氮循環的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明生物多樣性的各個面向會互相影響。</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明遺傳多樣性主要探討個體、細胞及基因等層級的多樣性。</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明物種多樣性主要是探討界、門、綱、目、科、屬及種各生物類群層級的多樣性。</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明生態系多樣性主要是探討族群、群集、生態系及生物圈等層級的多樣性。</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明遺傳多樣性的意義。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明族群大小與遺傳多樣性的關係。</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明遺傳多樣性流失的影響。</td>
<td>2-3</td>
</tr>
</tbody>
</table>

<p>| | | | 1-1 | 9.5-10.5 節 |</p>
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>地球環境</td>
<td>生物圈的組成 (F)</td>
<td>BFc-Va-1</td>
<td>生態學的研究層級主要為個體、族群、群集、生態系及生物圈。</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BFc-Va-2</td>
<td>臺灣主要的生態系可分為自然生態系與人工生態系。</td>
<td>說明物種多樣性的意義。</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>科學、科技、社會與人文（M）</td>
<td>科學在生活中的應用（Mc）</td>
<td>BMc-V a-1</td>
<td>生物科技的應用。</td>
<td>1-1 可與次主題「生物多樣性」項下之BGc-V a-6生物多樣性的保育整併，以達到概念的完整性。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMc-V a-2</td>
<td>以生態學的理論為基礎，規劃保育策略。</td>
<td>2-1 可與次主題「生物多樣性」項下之BGc-V a-6生物多樣性的保育整併，以達到概念的完整性。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMc-V a-3</td>
<td>可以實際案例，由研究、教育、立法及行政等方面探討生物多樣性的保育。</td>
<td>3-1 可與次主題「生物多樣性」項下之BGc-V a-6生物多樣性的保育整併，以達到概念的完整性。</td>
</tr>
<tr>
<td>資源與永續發展（N）</td>
<td>永續發展與資源利用（Na）</td>
<td>BNa-V a-1</td>
<td>以實例說明棲地零碎化造成的邊緣效應對物種多樣性之影響。</td>
<td>1-1 可與次主題「生物多樣性」項下之BGc-V a-3物種多樣性整併，以達到概念的完整性。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BNa-V a-2</td>
<td>以實例說明入侵外來種對物種多樣性之影響。</td>
<td>2-1 可與次主題「生物多樣性」項下之BGc-V a-3物種多樣性整併，以達到概念的完整性。</td>
</tr>
</tbody>
</table>

（二）物理

1. 普通型高級中等學校必修課程

十二年國教十年級基礎物理課程綱要，除了延續九年課綱的設計精神，以「物理學家發想過程的故事為主、基礎物理通才知識為輔」，也更清楚地揭示：十年級基礎物理是針對「不分組、全領域學生」所設計的課程，更以編排「文組取向學生」更容易接受與吸收的教材為目標，希望全體學生接受的是「物理發展的精神與傳承」，而非只是比較片段、比較不連貫的科學知識。

物理發展的主軸有兩個：「能量」與「尺度」。物理學家涉獵的尺度，從小於 10^{-15} 公尺的原子核，到大約 10^{23} 公里即「可觀察宇宙」，這之中涵蓋的尺度變化與物體結構，有原子核、原子、分子、細胞、生物體、行星、恆星、星系等。而從能量的角度觀察，宇宙伊始高於 10^{32} K 的高能物理世界，演化到接近 0K 的低溫物理世界，物理學家發現這裏的巨觀物理、介觀物理和微觀物理各有千秋，各有不同的交互作用在穿針引線，進而巧妙地編織這個多元多彩的物理世界。

因此，這次課綱配合故事性與傳承性，將九年課綱的前後順序做了一點更動，除了繼續延續九年課綱試圖跳脫「聲、光、熱、
電」的傳統教學模式外，更強調的是：通識物理的「脈絡與傳承」。

脈絡清楚、分明是這份以十二年國民基本教育為主的領綱和過去版本最大的差異。本課綱介紹的編排順序，只是一個建議，主旨是用來說明基礎物理課程的編排應該要有一個更清楚的脈絡，更有先後傳承的故事性。教材編輯者與第一線的教師可以依教學現場的需要，將自己的觀點與創意植入，做不同的脈絡更動。

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量的形式、轉換及流動 (B)</td>
<td>PBa-Vc-1</td>
<td>電場以及磁場均具有能量，利用手機傳遞訊息即是在電磁波的形式來傳遞能量的實例。</td>
<td>2-1 介紹運動物體的動能與位能，其總和稱為力學能。</td>
<td>3節</td>
</tr>
<tr>
<td></td>
<td>PBa-Vc-2</td>
<td>不同形式的能量間可以轉換，且總能量守恆。能量的形式因觀察尺度的不同，而有不同的展現與說明。</td>
<td>2-2 有關各種能量及能量之間的轉換，避免做定量推導及計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PBa-Vc-3</td>
<td>質量及能量可以相互轉換，其轉換公式為 (E = mc^2)。</td>
<td>2-3 可舉焦耳實驗為例，說明力學能和熱之間的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PBa-Vc-4</td>
<td>原子核的核裂變及原子核的分裂是質量可以轉換為能量的應用實例，且為目前重要之能源議題。</td>
<td>2-3 以生物與化學上的能量的轉換做例子，說明能量守恆具有普適性。</td>
<td></td>
</tr>
<tr>
<td>溫度與熱量 (Bb)</td>
<td>PBb-Vc-1</td>
<td>克氏溫標的意義及理想氣體的內能的簡單說明。</td>
<td>1-1 簡介理想氣體的熱能。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PBb-Vc-2</td>
<td>實驗顯示：把功轉換成熱很容易，卻無法把熱完全轉換為功。</td>
<td>1-2 介紹克氏溫標（絕對溫標）。說明絕對溫度越高代表物體中原子的平均動能越大。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PBb-Vc-3</td>
<td>物體內的原子不斷在運動並交互作用，此交互作用能量與原子的</td>
<td>2-1 介紹功與熱的轉換。實驗顯示，透過作功可以輕易地把能量轉換成熱，卻無法把熱完全用來作功。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>物質系統</td>
<td>PEb-Vc-4</td>
<td>動能合稱為熱能。</td>
<td>3-1</td>
<td></td>
</tr>
<tr>
<td>自然界的尺度與单位</td>
<td>PEa-Vc-1</td>
<td>科學上常用的物理量有國際標準單位。</td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEa-Vc-2</td>
<td>因工具的限制或應用上的方便，許多自然科學所需的測量，包含物理量，是經由基本物理量的測量再計算而得。</td>
<td>1節</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEa-Vc-3</td>
<td>原子的大小約為10^{-10}公尺，原子核的大小約為10^{-15}公尺。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>力與運動</td>
<td>PEb-Vc-1</td>
<td>伽利略之前學者對物體運動的觀察與思辯。</td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEb-Vc-2</td>
<td>伽利略對物體運動的研究與思辯歷程。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEb-Vc-3</td>
<td>克卜勒行星運動三大定律發現的歷史背景及內容。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEb-Vc-4</td>
<td>牛頓三大運動定律。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEb-Vc-5</td>
<td>摩擦力、正向力、彈力等常見的作用力。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-1 介紹伽利略之前，學者對物體運動的觀察與思辯歷程。

1-1 介紹伽利略對物體運動的研究與思辯歷程。

1節 科學上的基本物理量常以國際標準單位做基準，因工具的限制或應用上的方便，也有許多常用的物理量是經由基本物理量的測量再計算而得。

1-1 在從事科學研究時，科學家可以有主觀的判斷與猜想，但仍需藉由各種客觀的方法，如確認問題、提出假說、實驗分析與驗證、建構理論、做出預測等，來確認猜想或假說是否正確。

1節 介紹伽利略對物體運動的研究與思辯歷程。透過完整的運動學思辯歷程，說明人類對自然現象的關注，才會有科學的產生，並且引導學生了解科學並非憑空產生的想法。

1-1 此處介紹克卜勒行星運動定律的目的，是以此為例讓學生知道物體軌跡的確遵循已知的明確規律，而這些規律對於一般人而言，可能是極不明顯的事。如果不是克卜勒的發現，科學家可能還要摸索很久，才能確切了解這些規律的物理。

2-1 介紹伽利略對物體運動的研究與思辯歷程。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然界的現象與交互作用 (K)</td>
<td>波動、光及聲音 (Ka)</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-1</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-2</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-3</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-4</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-5</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-6</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-7</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-8</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-9</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
<tr>
<td></td>
<td>PKa-Vc-10</td>
<td>波速、頻率、波長的數學關係。定性介紹都卜勒效應及其應用。光的反射定律，並以波動理論解釋折射定律。惠更斯原理可以解釋光波如何前進、干涉和繞射。</td>
<td>1-1 說明波速、頻率、波長的關係（數學式）。將國民中學階段已經學過的基本概念做複習，以便加深印象。</td>
<td>2 節</td>
</tr>
</tbody>
</table>

示範實驗：力學能守恆與運動
- 可說明克卜勒定律是累積前人觀測資料之歸納性結果。
- 詳細敘述三個運動定律的意義，而敘述僅以定律之說明為主，不涉及公式之推導與計算。
- 僅以敘述方式說明可由運動方程式求得物體運動軌跡，不涉及軌跡數學式。
- 藉由第三定律的介紹，呼應前章節基本作用交互（力）的概念，並且具體說明作用力與反作用力的施力者與受力者。
- 一方面複習國民中學階段所學，一方面以這些熟悉的力為例，說明力會改變物體的運動狀態。例如：如果沒有摩擦力，一個等速前進的物體將以等速度持續前進，不涉及摩擦係數的量值。
- 不推導任何數學公式。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKa- Vc-7</td>
<td>馬克士威從其方程式預測電磁波的存在, 且計算出電磁波的速度等於光速, 因此推論光是一種電磁波, 後來也獲得證實。</td>
<td>不同, 以圖示法定量說明司乃耳定律。</td>
<td>5-1</td>
<td>7-1</td>
</tr>
<tr>
<td></td>
<td>5-1</td>
<td>馬克士威經由理論計算, 發現電磁波的速度與實驗上測出的光速相同, 因此推論光是一種電磁波, 後來也得到實驗證實。</td>
<td>7-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKb-Vc-1</td>
<td>牛頓運動定律結合萬有引力定律可用以解釋克卜勒行星運動定律。</td>
<td>說明可以從牛頓運動方程式及平方反比重力解釋克卜勒行星運動定律。</td>
<td>1-1</td>
<td>1節</td>
</tr>
<tr>
<td>PKb-Vc-2</td>
<td>物體在重力場中運動的定性描述。</td>
<td>可略加說明: 由牛頓運動方程式與平方反比重力解釋克卜勒定律是演繹式之推導, 而克卜勒定律則是歸納式的推論。這兩種方法都是研究科學的重要方法。</td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td>PKc-Vc-1</td>
<td>電荷會產生電場, 兩點電荷間有電力, 此力量值與兩點電荷所帶電荷成正比, 權重點電荷間的距離平方成反比。</td>
<td>簡單複習國民中學階段所學的電流會產生磁場, 以及安培右手定則。</td>
<td>3-1</td>
<td>6節</td>
</tr>
<tr>
<td>PKc-Vc-2</td>
<td>原子內帶負電的電子與帶正電的原子核以電力互相吸引, 形成穩定的原子結構。</td>
<td>定性介紹法拉第感應定律。藉由電磁感應現象, 來說明電與磁是不可分割的, 因此科學家把電場以及磁場統稱為電磁場。</td>
<td>3-2</td>
<td></td>
</tr>
<tr>
<td>PKc-Vc-3</td>
<td>變動的磁場會產生電場, 變動的電場會產生磁場。</td>
<td>示範實驗：載流導線的磁效應</td>
<td>4-1</td>
<td></td>
</tr>
<tr>
<td>PKc-Vc-4</td>
<td>所有的電磁現象經統整後, 皆可由馬克士威方程式描述。</td>
<td>說明馬克士威把電磁場所遵守的定律統整成一組方程式。</td>
<td>4-1</td>
<td></td>
</tr>
<tr>
<td>PKc-Vc-5</td>
<td>馬克士威方程式預測電磁場的擾動可以在空間中傳遞, 即為電磁波。</td>
<td>不需說明方程式的數學形式。簡單指出, 馬克士威方程式能以定量的方式來描述電磁現象。</td>
<td>5-1</td>
<td></td>
</tr>
<tr>
<td>PKc-Vc-6</td>
<td>電磁波包含低頻率的無線電波，</td>
<td>介紹電磁感應, 同時說明電磁場可以在空間中傳播, 從而形成電磁波。介紹馬克士威的方程式可以預測電磁波的存在。</td>
<td>5-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>僅需簡要說明電場、磁場的交互感應及</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 量子現象 | PKd-Vc-1 | 光具有粒子性，光子能量 $E=hc$，與其頻率 ν 成正比。 | 傳播。
・應簡要說明變動的電場會感應磁場，變化的磁場會感應電場。
示範實驗：電磁感應
介紹電磁波譜及在日常生活中的應用。 | 6-1 |
| | PKd-Vc-2 | 光電效應在日常生活中之應用。 | 1-1 簡介光電效應，說明光具有粒子性。引入 $E=hc$ 公式，說明光子能量 E 與其頻率 ν 成正比。
・定性說明如果將頻率夠高的光照射到某些金屬上，便可以將電子打離金屬表面。
・不涉及任何數學推導。 | 2-1 舉例說明光電效應在日常生活中之應用。
・光電的產生只和入射光的頻率有關而和光的強度無關。 |
| | PKd-Vc-3 | 原子光譜。 | 4-1 說明不同的原子有不同的光譜；經由測量一個物體發出的原子光譜，可以推論此物體的組成成分。 | 4節 |
| | PKd-Vc-4 | 電子的雙狹縫干涉現象及其波動性。 | 4-2 說明原子外圍的電子只能具有特定的能量，稱之為能階。 | |
| | PKd-Vc-5 | 光子與電子以及所有微觀粒子都具有波粒二象性。 | 4-3 說明電子可以經由吸收或發射特定能量（頻率）之光子，由一個能階躍遷到另一個能階，從而以理論解釋實驗觀測到的原子光譜。
・說明光是由一顆顆的光量子所組成的，每顆光量子的能量和光的頻率成正比。
・定性介紹物理學家完成電子的雙狹縫干涉實驗。此一實驗的概念及光學中的楊氏干涉實驗完全相同，可明確地 | |
<p>| | PKd-Vc-6 | 牛頓運動定律在原子尺度以下並不適用。 | | |</p>
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>基本交互作用 (Ke)</td>
<td>PKe-Vc-1</td>
<td>原子核內的質子與質子、質子與中子、中子與中子之間有強力使它們互相吸引。</td>
<td>呈現電子的波動性。簡介電子的雙狹縫干涉現象，藉此說明電子具有波動性。</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>PKe-Vc-2</td>
<td>單獨的中子並不穩定，會透過弱作用（或弱力）自動衰變成質子及其他粒子。</td>
<td>6-1</td>
<td>指出牛頓運動定律在微觀（原子）尺度下並不適用，此時適用之理論稱為量子論。</td>
</tr>
<tr>
<td></td>
<td>PKe-Vc-3</td>
<td>自然界的一切交互作用可完全由重力、電磁力、強力及弱作用等四種基本交互作用所涵蓋。</td>
<td>生活中常見的物質都是由原子組成的。固態、液態及氣態之間的差異，都可由原子觀點解釋。</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明大自的聲、光、熱、電等現象都可以用原子（或更基本的粒子）之間的交互作用來解釋。</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明原子為電中性，內部有帶正電的原子核，帶負電的電子則環繞於原子核外。</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明原子核內有帶正電的質子與不帶電的中子。</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明質子、中子尚有內部結構，而且是由夸克所組成的。</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>不須說明夸克的種類及所帶電荷。本說明的主要目的僅在於讓學生認識：實驗顯示質子與中子仍有內部的結構，理論上可以經由「夸克」來解釋，而此概念也被進一步的實驗所驗證。</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明單獨的中子並不穩定，會透過弱作用（弱力）自動衰變成質子及其他粒子，某些原子核也會有類似的衰變。而弱作用的作用範圍比強力的作用範圍更短。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明自然界的基本作用力可分為重力、電力與磁力、強力、弱作用。物質間一切的交互影響，都是由這幾種基本交互作用所產生。</td>
<td>3-1</td>
</tr>
</tbody>
</table>

6 節
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>綜合而成的。</td>
<td>3-2 說明質量的物體之間有著有引力，以及此力量值與物體間距離的平方成反比例。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>說明磁鐵間有磁力，簡介磁力線與磁場的概念。</td>
<td>3-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>說明質量與質量、質量與中子、中子與中子之間有「強力」，因此能束縛在一起形成原子核。而強力的作用力範圍很短，只限制在原子核量值的尺度內，因此在日常生活中感覺不到它的作用。</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>即是簡單介紹牛頓發現萬有引力的歷史背景與內容。</td>
<td>• 簡單介紹牛頓發現萬有引力的歷史背景與內容。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>不推導任何數學式為前提學習萬有引力平方反比例公式。</td>
<td>• 不推導任何數學式為前提學習萬有引力平方反比例公式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>說明電荷會產生電場，兩電荷之間有電力，此力量值與電荷之間距離的平方成反比例。</td>
<td>• 說明電荷會產生電場，兩電荷之間有電力，此力量值與電荷之間距離的平方成反比例。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>原子內帶負電的電子與帶正電的原子核之間有相吸的電力，才會組合成原子。電子與電子之間則有相互排斥的電力。</td>
<td>• 原子內帶負電的電子與帶正電的原子核之間有相吸的電力，才會組合成原子。電子與電子之間則有相互排斥的電力。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>僅介紹單一電荷產生的電場。</td>
<td>• 僅介紹單一電荷產生的電場。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>不推導任何數學式為前提學習靜電力平方反比例公式。</td>
<td>• 不推導任何數學式為前提學習靜電力平方反比例公式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>說明日常生活中所經驗到的各種力，例如：摩擦力、各種「接觸力」（用手推桌子、地板把桌子撐住）、彈性力、氣體分子碰撞容器壁產生的壓力來源等，若從原子的觀點來看，其實都是電力與</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

188
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>科學在生活中的應用（Mc）</td>
<td>PMc-Vc-1 用電安全。</td>
<td>3-1 介紹科學家面對問題時，所持思考方式與態度，例如：理性、客觀、好奇心、避免妄下決斷等。</td>
<td>1節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMc-Vc-2 電在生活中的應用。</td>
<td>3-2 簡介物理學涵蓋的範疇、探究的方向與演進的歷史。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMc-Vc-3 科學的態度與方法。</td>
<td>3-3 說明現代世界經常面對跨學科的挑戰，並非侷限於單一學科的探究。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMc-Vc-4 近代物理科學的發展，以及不同性別、背景、族群者於其中的貢獻。</td>
<td>4-1 擇例簡介物理科學家之貢獻與研究歷程，並兼顧不同族群、性別與背景，此內容應融入相關章節，不必另成一個單元。</td>
<td></td>
</tr>
<tr>
<td>資源與永續發展（N）</td>
<td>能源的開發與利用（Nc）</td>
<td>PNc-Vc-1 原子核的分裂。</td>
<td>1-1 簡述原子核的分裂。</td>
<td>1節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNc-Vc-2 核能發電與放射安全。</td>
<td>2-1 簡述核能發電並介紹放射安全。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNc-Vc-3 能量一樣的系統，作功的能力不一定相同。</td>
<td>2-2 簡述原子核的融合及核能。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNc-Vc-4 雖然能量守恆，但能量一旦發生形式上的轉換，通常其作功效能會降低。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

189
2. 普通型高級中等學校加深加廣選修課程

普通型高級中等學校加深加廣選修物理為 10 學分，內容規劃如下：

<table>
<thead>
<tr>
<th>科目</th>
<th>課程名稱</th>
<th>學分</th>
</tr>
</thead>
<tbody>
<tr>
<td>選修物理</td>
<td>力學一</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>力學二與熱學</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>波動、光及聲音</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>電磁現象一</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>電磁現象二與量子現象</td>
<td>2</td>
</tr>
</tbody>
</table>

課程名稱：力學一

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質系統</td>
<td>自然界的</td>
<td>PEA-Va-1 测量都會有不確定度，不確定度源自被測量物、測量儀器的特性，並受測量者及環境的影響。不確定度有國際公定的標準計算方法。</td>
<td>1-1 說明不確定度。</td>
<td>2 節</td>
</tr>
<tr>
<td>(E)</td>
<td>尺度與單位 (Ea)</td>
<td></td>
<td>1-2 測量的有效數字和不確定度的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-3 不確定度的組合，例如: 兩個物體的重量各有不確定度，其總和不確定度如何估算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-4 物理量的因次及因次分析法。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-5 導出量的測量與不確定度的評估，例如: 密度、速度、面積等基本導出量，其不確定度如何評估。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEB-Va-1</td>
<td>質點在一平面上運動，則其位 移、速度、加速度有兩個獨立的分 量。</td>
<td>1-1 以質點在一直線上的位置變化描述運動，並說明位移及路徑長。</td>
<td></td>
</tr>
<tr>
<td>力與運動</td>
<td>PEB-Va-2</td>
<td>直線等加速運動 (例如: 自由落體運動)，其位移、速度、加速度及 時間的數學關係。</td>
<td>1-2 介紹平均速度、瞬時速度。</td>
<td>15 節</td>
</tr>
<tr>
<td>(Eb)</td>
<td>PEB-Va-3</td>
<td>二質點在同一直線上下運動，其相 對速度為二質點速度之差。</td>
<td>2-1 介紹加速度。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEB-Va-4</td>
<td>簡諧運動為一週期性運動，其位 移和速度可用時間的正弦函數或</td>
<td>2-2 詳細討論一維空間的等加速運動，並說明鉛直方向的自由落體運動。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>簡諧運動為一週期性運動，其位 移和速度可用時間的正弦函數或</td>
<td>3-1 說明直線上的相對運動。實驗一: 自由落體與物體在斜面上的運動</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>簡諧運動為一週期性運動，其位 移和速度可用時間的正弦函數或</td>
<td>4-1 簡諧運動為一週期性運動，並解釋位移與時間的關係。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>餘弦函數表示。</td>
<td>PEb-Va-5</td>
<td>PEb-Va-5</td>
<td>5-1 利用平面向量之概念將位移、速度及加速度推廣至二維空間的運動。</td>
<td></td>
</tr>
<tr>
<td>質點如在平面上運動，則其位移、速度、加速度有兩個分量，應用向量表示，例如：拋體運動，其軌跡是拋物線。</td>
<td>PEb-Va-6</td>
<td>PEb-Va-6</td>
<td>5-2 以拋體運動為例，說明二維的等加速運動。</td>
<td></td>
</tr>
<tr>
<td>質點作等速圓周運動時其速率及角速度不變，但有向心加速度，因此速度的方向會改變。</td>
<td></td>
<td>6-1 引入角速度、向心加速度概念。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEb-Va-7</td>
<td>PEb-Va-7</td>
<td>力是向量，可以分解和合成。</td>
<td>7-1 說明力的向量性質與力的合成分解。</td>
<td></td>
</tr>
<tr>
<td>PEb-Va-8</td>
<td>PEb-Va-8</td>
<td>牛頓三大運動定律包括慣性定律、運動定律、作用與反作用定律。</td>
<td>8-1 介紹慣性的概念。</td>
<td></td>
</tr>
<tr>
<td>PEb-Va-9</td>
<td>PEb-Va-9</td>
<td>牛頓第二運動定律的應用，例如：簡諧運動與等速圓周運動。</td>
<td>8-2 介紹力與加速度之間的關係。</td>
<td></td>
</tr>
<tr>
<td>PEb-Va-9</td>
<td>PEb-Va-9</td>
<td>牛頓第二運動定律的應用，例如：簡諧運動與等速圓周運動。</td>
<td>8-3 介紹作用力與反作用力的關係。</td>
<td></td>
</tr>
<tr>
<td>PEb-Va-9</td>
<td>PEb-Va-9</td>
<td>牛頓第二運動定律的應用，例如：簡諧運動與等速圓周運動。</td>
<td>9-1 介紹虎克定律、簡諧運動及等速圓周運動之向心力。</td>
<td>9節</td>
</tr>
<tr>
<td>自然界的現象與交互作用 (Kb)</td>
<td>PKb-Va-1</td>
<td>PKb-Va-1</td>
<td>1-1 說明萬有引力定律的數學形式。</td>
<td>3節</td>
</tr>
<tr>
<td>PKb-Va-2</td>
<td>PKb-Va-2</td>
<td>萬有引力定律的說明。</td>
<td>2-1 由物體在地球表面所受重力得出地球表面的重力加速度。</td>
<td></td>
</tr>
<tr>
<td>PKb-Va-3</td>
<td>PKb-Va-3</td>
<td>地球表面的重力與重力加速度。</td>
<td>3-1 應用牛頓運動定律與萬有引力定律解釋行星及人造衛星的運動。</td>
<td></td>
</tr>
<tr>
<td>PKb-Va-4</td>
<td>PKb-Va-4</td>
<td>行星與人造衛星的運動。</td>
<td>4-1 指出克卜勒行星運動第一定律可以藉由牛頓運動定律及萬有引力定律的結合推導出來。這裡並不是要做推導，而是說明克卜勒行星運動第一定律和牛頓定律的關係。</td>
<td></td>
</tr>
<tr>
<td>PKb-Va-4</td>
<td>PKb-Va-4</td>
<td>以圓周運動為例說明如何由萬有引力定律推導出克卜勒定律。</td>
<td>4-2 以圓周運動為例說明克卜勒行星運動第三定律如何經由牛頓運動定律及萬有引力定律推導出來。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>科學、科技、社會及人文</td>
<td>科學發展的歷史 (Mb)</td>
<td>PMb-Va-1 克卜勒定律和萬有引力定律的關係。</td>
<td>1-1 融入學習內容：萬有引力 (Kb)。</td>
<td>1節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMb-Va-2 伽利略的慣性原理和牛頓運動定律的關係。</td>
<td>2-1 融入學習內容：PEb-Va-8 牛頓三大運動定律包括慣性定律、運動定律、作用與反作用定律。 3-1 簡單複習高一所學相關議題。</td>
<td>1節</td>
</tr>
<tr>
<td></td>
<td>科學在生活中應用 (Mc)</td>
<td>PMc-Va-1 以物理原理解釋自然現象，例如：光的各種現象、天體運動、各種力的作用。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

課程名稱：力學二與熱學

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質系統</td>
<td>力與運動 (Eb)</td>
<td>P乙-Va-10 質點的動量等於質點的質量乘以速度，其時間變化率等於質點所受作用力。衡量受動量的變化。</td>
<td>10-1 定義動量與質量，並說明其與作用力之間的關係。</td>
<td>15節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P乙-Va-11 質點系統的動量對時間的變化率等於作用力的總和，如外力的總和為零，則系統動量守恆。</td>
<td>11-1 介紹質點系統的動量守恆定律。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P乙-Va-12 質點系統 weren心的定義。</td>
<td>12-1 介紹質點系統的動量守恆定律。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P乙-Va-13 質心速度、質心加速度及系統總動量及其所受外力的關係。</td>
<td>13-1 介紹質點系統的動量守恆定律。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P乙-Va-14 一質點的角動量等於其位置向量和動量的向量外積，其時間變化率等於質點所受的力矩。</td>
<td>14-2 說明克卜勒行星運動第二定律是角動量守恆定律的體現。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P乙-Va-15 許多生活上和工程上的問題都可用牛頓三大運動定律來解釋或計算，例如：靜力平衡、摩擦力、一維碰撞問題。</td>
<td>15-1 說明一維彈性碰撞及一維非彈性碰撞。</td>
<td></td>
</tr>
<tr>
<td>能量的形式、轉換及流動</td>
<td>能量的形態、轉換及流動 (Ba)</td>
<td>P巴-Va-1 功等於力和位移的向量內積，功率為功的時間變化率。</td>
<td>1-1 以力與位移的純量積定義功，並介紹平均功率及瞬時功率。</td>
<td>12節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P巴-Va-2 功能定理。</td>
<td>2-1 定義動能，並證明外力作功之總和等於質</td>
<td>12節</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>(B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBa-Va-3</td>
<td>位能的定義。</td>
<td>點動能之變化量。</td>
<td>3-1</td>
<td></td>
</tr>
<tr>
<td>PBa-Va-4</td>
<td>重力位能及彈簧位能的一般表示式。</td>
<td>說明位能的定義。</td>
<td>4-1</td>
<td></td>
</tr>
<tr>
<td>PBa-Va-5</td>
<td>一般性的力學能守恆律與實例。</td>
<td>說明重力位能及彈簧位能。</td>
<td>5-1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>能量的形式、轉換及流動 (B)</th>
<th>溫度與熱量 (Bb)</th>
<th>PBB-Va-1</th>
<th>理想氣體狀態方程為 $PV=nRT$，此溫度 T 為絕對溫度。</th>
<th>1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PBB-Va-2</td>
<td>將牛頓力學定律應用到理想氣體</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>動力論，可以推導出氣體壓力以</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>及體積與內能的定量關係。將此</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>結果套用到理想氣體狀態方程式</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>則可得出理想氣體的內能與絕對</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>溫度成正比的結論。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBB-Va-3</td>
<td>在一系統中氣體分子運動速率並</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>非完全相同，而是有一個速率分</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>布。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>課程名稱：波動、光及聲音</th>
</tr>
</thead>
<tbody>
<tr>
<td>主題</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>自然界的現象與交互作用 (K)</td>
</tr>
<tr>
<td>PKa-Va-2</td>
</tr>
<tr>
<td>PKa-Va-3</td>
</tr>
<tr>
<td>PKa-Va-4</td>
</tr>
<tr>
<td>PKa-Va-5</td>
</tr>
<tr>
<td>PKa-Va-6</td>
</tr>
<tr>
<td>PKa-Va-7</td>
</tr>
<tr>
<td>主題</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>PKa-Va-8</td>
</tr>
<tr>
<td>PKa-Va-9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>博動、光及聲音 (Ka)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
央處之暗紋所在位置與波長以及屏幕距離之間的定量關係。

實驗六：干涉與繞射
• 避免對水波槽實驗進行複雜分析，只需說明同相干涉。

融入學習內容：波動、光及聲音 (Ka)。

課程名稱：電磁現象一

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學、科技、社會及人文 (M)</td>
<td>科學在生活中的應用 (Mc)</td>
<td>PMc–V a-1 以物理原理解釋自然現象，例如：光的各種現象、天體運動、各種力的作用。 電路、電磁波、透鏡、核能、光電效應的應用。</td>
<td>• 融入學習內容：波動、光及聲音 (Ka)。</td>
<td>1 節</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然界的現象與交互作用 (K)</td>
<td>電磁現象 (Kc)</td>
<td>PKc–V a-1 可以用電力線表示出電場的大小與方向。 K 庫倫作用力是守恆力，具有位能。在電場中，單位電荷在某點所具有的位能，即為該點之電位。</td>
<td>1-1 介紹靜電力的數學形式。 1-2 介紹電力線的複合。 1-3 說明電場之定義及電力線之關係。 1-4 說明帶電質點在均勻電場中所受的力與運動軌跡。 • 說明電位、電位差、電位能。 • 說明帶電平行板間形成的電場及電位差。 • 避免複雜的計算，應將重點擺在物理觀念的加強。</td>
<td>10 節</td>
</tr>
<tr>
<td>PKc–V a-2</td>
<td>介紹電流的定義。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKc–V a-3</td>
<td>說明必歐-沙伐定律及安培右手定則。 堆流導線如長直導線、圓線圈、長螺線管，會產生磁場，遵循必歐-沙伐定律及安培右手定則。 載流導線在磁場中受力，可利用此特性設計電動機。 在平面上運動的帶電質點受到重力及電場力的作用。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKc–V a-7</td>
<td>7-1 介紹電流的定義。</td>
<td></td>
<td>10 節</td>
<td></td>
</tr>
<tr>
<td>PKc–V a-8</td>
<td>7-2 說明必歐-沙伐定律及安培右手定則。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKc–V a-9</td>
<td>7-3 說明長直導線及圓線圈電流所產生的磁場。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKc–V a-8</td>
<td>7-4 說明長螺線管電流會在螺線管內部產生相當均勻的磁場。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>直於平面之均勻磁場的作用，會受力並做等速圓周運動。</td>
<td>8-1 說明載流導線在均勻磁場中所受的作用力及其應用。</td>
<td>8-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-2 說明載流平行導線間的作用力。</td>
<td>8-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-3 介紹電動機的原理。</td>
<td>8-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>實驗八：電流天平。</td>
<td>8-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-1 說明帶電粒子在磁場中運動所受到的作用力。</td>
<td>9-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9-2 描述帶電粒子在均勻磁場中的運動及其應用。</td>
<td>9-2</td>
</tr>
</tbody>
</table>

PKc-Va-10 磁通量的負時間變化率等於感應電動勢，此為法拉第定律。 |
PKc-Va-11 電壓和電流有直流電和交流電兩種。 |
PKc-Va-12 發電機與變壓器的原理皆為電磁感應。 |
PKc-Va-13 電場變化會產生磁場。 |
PKc-Va-14 電磁波在真空中傳播的速率由電磁常數決定，與頻率無關。 |
PKc-Va-15 平面電磁波的電場、磁場以及傳播方向互相垂直。 |

PKc-Va-10 介紹感應電動勢和磁通量變化的關係。 |
PKc-Va-11 介紹法拉第定律，並說明這是能量守恆的表現。 |
PKc-Va-12 介紹交流發電機與變壓器的基本原理。 |
PKc-Va-13 介紹隨時間改變的電場也會在其周遭感應出磁場。 |
PKc-Va-14 電磁波之產生和傳播。 |
PKc-Va-15 電磁波在真空中的傳播速率可以透過電磁學定律完全決定。此速率與頻率沒有關係。 |

10-1 位移電流這名詞雖然有歷史上的意義，但容易引起初學者的困擾，故此處建議只介紹現象本身而不刻意去引入此名詞。 |
10-2 強調電磁波的產生是透過電磁感應，以及電場改變時所衍生的磁效應來相輔相成，並不是要說明電磁波和狹義相對論的關係。 |
14-1 介紹平面電磁波的電場、磁場以及傳播方向之關係。 |
14-2 10 節
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學、科技、社會及人文（M）</td>
<td>科學在生活中的應用（Mc）</td>
<td>PMc-Va-1</td>
<td>簡介電磁波的偏振現象。</td>
<td>15-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMc-Va-2</td>
<td>電磁波之應用。</td>
<td>15-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>實驗九：認識電磁波（經由實驗讓學生了解15-1、15-2、15-3所列電磁波的特性）。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・融入學習內容：電磁現象（Kc）</td>
<td>1節</td>
</tr>
<tr>
<td>課程名稱：電磁現象二與量子現象</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>自然界的現象與交互作用（K）</td>
<td>電磁現象（Kc）</td>
<td>PKc-Va-4</td>
<td>電位差等於電流乘以電阻，此為歐姆定律。</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PKc-Va-5</td>
<td>電路中電流帶有能量。</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PKc-Va-6</td>
<td>電路有串聯、並聯及迴路等形式，電路中的能量及電量必須守恆。</td>
<td>4-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>以上6-1、6-2只涉及簡單電路。</td>
<td>7節</td>
</tr>
<tr>
<td>量子現象（Kd）</td>
<td></td>
<td>PKd-Va-1</td>
<td>用湯木生陰極射線管及密立坎油滴實驗測量電子的荷質比及電量。</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PKd-Va-2</td>
<td>X射線比起可見光來能量較高、波長較短，可用來分析晶體結構，並且有許多其他的應用。</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PKd-Va-3</td>
<td>普朗克分析黑體輻射現象，提出量子論之解釋。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>實驗十一：電子的荷質比認識。</td>
<td>19節</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>實驗十一：電子的荷質比認識。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-2</td>
<td>介紹湯木生陰極射線管及電子荷質比實驗。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1</td>
<td>簡述黑體輻射的性質及普朗克的量子論</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>PKd-Va-4</td>
<td>愛因斯坦分析光電效應，提出光量子論。</td>
<td>介紹光電效應及愛因斯坦光量子論。</td>
<td>4-1</td>
<td></td>
</tr>
<tr>
<td>PKd-Va-5</td>
<td>德布羅意提出物質波理論：物質都具有波與粒子的二象性，並經實驗驗證。</td>
<td>敘述德布羅意物質波的提出及證實。</td>
<td>5-1</td>
<td></td>
</tr>
<tr>
<td>PKd-Va-6</td>
<td>拉塞福提出正電荷集中在核心，電子分布在外的原子模型。</td>
<td>說明物質波可形成駐波，及其和原子模型的關係。</td>
<td>5-2</td>
<td></td>
</tr>
<tr>
<td>PKd-Va-7</td>
<td>波耳假設角動量的量子化，提出氫原子模型，成功解釋氫原子光譜。</td>
<td>說明光以及傳統上所認知的物質都具有波與粒子的二象性。</td>
<td>5-3</td>
<td></td>
</tr>
<tr>
<td>PKd-Va-8</td>
<td>依照量子力學解釋，原子內之電子是以機率分布出現，沒有固定的古典軌道。</td>
<td>說明拉塞福的原子模型。</td>
<td>6-1</td>
<td></td>
</tr>
<tr>
<td>PKe-Va-1</td>
<td>質子和中子可組成結構穩定以及不穩定的原子核。</td>
<td>簡述氫原子光譜及波耳的氫原子模型。</td>
<td>7-1</td>
<td></td>
</tr>
<tr>
<td>PKe-Va-2</td>
<td>不穩定的原子核會經由放射性衰變釋放能量或轉變為其他的原子核。</td>
<td>可指出波耳原子模型不足之處。</td>
<td>8-1</td>
<td></td>
</tr>
<tr>
<td>PKe-Va-3</td>
<td>基本交互作用遵循許多守恆律，例如：動量守恆、角動量守恆、質量守恆、電荷守恆。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMc-Va-1</td>
<td>以物理原理解自然現象，例如：光的各種現象、天體運動、各種力的作用。</td>
<td>簡述原子核的組成。</td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td>PMc-Va-2</td>
<td>電路、電磁波、透鏡、核能、光電效應的應用。</td>
<td>簡述原子核的衰變及衰變的放射性。</td>
<td>2-1</td>
<td></td>
</tr>
<tr>
<td>PMc-Va-3</td>
<td></td>
<td>可簡述原子核衰變和強、弱作用的關係以及必修物理的內容。</td>
<td>2-2</td>
<td></td>
</tr>
<tr>
<td>PMc-Va-4</td>
<td></td>
<td>綜合陳述動量守恆、角動量守恆、電荷守恆、質量守恆。</td>
<td>3-1</td>
<td></td>
</tr>
<tr>
<td>PMc-Va-5</td>
<td></td>
<td>可指出守恆定律因為和物體之交互作用細節無關，故其理論上之重要性有時可能凌駕了交互作用本身的細節；而在實作上，守恆定律有時也可以幫助我們對某些實驗結果迅速做出判讀。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

科学、科技、社会及人文

<p>| 科學、科技、社會及人文（M） | 科學在生活中的應用（Mc） | | | | |
|-----------------------------|----------------------------|-----------------|-----------------|-----------------|
| PMc-Va-1 | 以物理原理理解自然現象，例如：光的各種現象、天體運動、各種力的作用。 | | 融入各學習內容：量子現象（Kd），基本交互作用（Ke）。 | 1節 |
| PMc-Va-2 | 電路、電磁波、透鏡、核能、光電效應的應用。 | | | |</p>
<table>
<thead>
<tr>
<th>實驗名稱</th>
<th>內容</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>一、 自由落體與物體在斜面上的運動</td>
<td>• 利用計時器測量自由落體的速度及加速度。
• 利用力學滑車、計時器記錄滑車由斜面滑下之位移、速度、加速度，以了解等加速度直線運動。</td>
<td>

</td>
</tr>
<tr>
<td>實驗名稱</td>
<td>內容</td>
<td>備註</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3. 波長和駐波: 微波會在發射器和接收器間形成駐波,以此測量波長。</td>
<td></td>
<td>的電磁波實驗。</td>
</tr>
<tr>
<td>4. 偏振: 微波經過偏極柵會發生偏振,可用接收器測量微波強度,讓微波經過兩片偏極柵,測量</td>
<td></td>
<td>不做惠司同電橋測定電阻之實驗。</td>
</tr>
<tr>
<td>強度和偏極柵間角度的關係。此項實驗可驗證電磁波為橫波。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◎例如: 儀器不夠精密可跳過第三項波長和駐波的實驗。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

十、歐姆定律與電路

• 實證歐姆定律。
• 練習電路之聯結及三用電錶之使用法。

十一、電子的荷質比認識

• 使用電子束管及荷姆霍茲線圈或其他性質相似裝置, 配合螺線管以測定電子的荷質比。

（三）化學

1. 普通型高級中等學校必修課程

本課程分主題、次主題、學習內容、學習內容說明、參考節數等五項，教材編輯時，可統整教材內容自訂篇、章、節等順序或名稱，以為教材編撰之綱要。

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質的組成與特性 (A)</td>
<td>物質組成與元素的週期性 (Aa)</td>
<td>CAA-Vc-1</td>
<td>拉瓦節提出物質最基本的組成是元素。</td>
<td>1-1 以科學史說明近代化的誕生——元素概念、氧化反應與原子說發展的過程。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAA-Vc-2</td>
<td>道爾頓根據定比定律、倍比定律、質量守恆定律及元素概念提出原子說。</td>
<td>2-1 倍比定律不涉及複雜計算。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAA-Vc-3</td>
<td>元素依原子序大小順序, 有規律的排列在週期表上。</td>
<td>3-1 僅說明原子序1-18原子的價電子與元素性質規律性的關係。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAA-Vc-4</td>
<td>同位素。</td>
<td>4-1 僅以碳與氧為例說明同位素。</td>
</tr>
<tr>
<td>物質的形態、性質及分類 (Ab)</td>
<td>物質的三相圖。</td>
<td>CAB-Vc-1</td>
<td>元素可依特性分為金屬、類金屬及非金屬。</td>
<td>1-1 僅以水與二氧化碳的相圖說明温度與壓力如何影響物質的三態。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAB-Vc-2</td>
<td>化合物可依組成與性質不同, 分為離子化合物與分子化合物。</td>
<td>2-1 利用週期表介紹元素分類共同性質。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAB-Vc-3</td>
<td></td>
<td>3-1 以氯化鈉為例, 介紹離子化合物之性質;以水與二氧化碳為例, 介紹分子化合物</td>
</tr>
</tbody>
</table>

200
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>能量的形</td>
<td>能量的形</td>
<td>CBa-Vc-1</td>
<td>化學反應發生後，產物的能量總和</td>
<td>1-1 以反應前後能量變化圖說明放熱反應與</td>
</tr>
<tr>
<td>式、轉換</td>
<td>式與轉換</td>
<td>CBa-Vc-2</td>
<td>較反應物低者，為放熱反應；反之，</td>
<td>吸熱反應的不同。</td>
</tr>
<tr>
<td>及流動</td>
<td>(Ba)</td>
<td></td>
<td>則為吸熱反應。</td>
<td>1-2 熱化學反應式的寫法。</td>
</tr>
<tr>
<td>(B)</td>
<td></td>
<td></td>
<td>能量轉換過程遵守能量守恆。</td>
<td>2-1 一般化學反應均遵守能量守恆。</td>
</tr>
<tr>
<td>物質的結</td>
<td>物質的分</td>
<td>CCa-Vc-1</td>
<td>混合物的分離過程與純化方法：蒸餾、萃取、色層分析、硬水軟化及</td>
<td>1-1 墨水蒸餾可分離墨水中的色素與水。</td>
</tr>
<tr>
<td>構與功能</td>
<td>離與鑑定</td>
<td>CCa-Vc-2</td>
<td>海水純化等。</td>
<td>1-2 以有機溶劑可以萃取花或葉中的色素。</td>
</tr>
<tr>
<td>(C)</td>
<td>(Ca)</td>
<td></td>
<td>化合物特性的差異。</td>
<td>1-3 以色層分析分離花或葉萃取液中的色素。</td>
</tr>
<tr>
<td>物質的結</td>
<td>原子之間會以不同方式形成不同</td>
<td>CCb-Vc-1</td>
<td>化學鍵的特性會影響物質的結構，</td>
<td>1-1 介紹鍵結種類：共價鍵、離子鍵及金屬</td>
</tr>
<tr>
<td>構與功能</td>
<td>的化學鍵結。</td>
<td>CCb-Vc-2</td>
<td>並決定其功能。</td>
<td>鍵。</td>
</tr>
<tr>
<td>(Cb)</td>
<td></td>
<td></td>
<td></td>
<td>2-1 共價鍵與分子化合物：以路易士結構表示常見分子結構（水、氨、甲烷、乙烯及二氧化碳）。</td>
</tr>
<tr>
<td>物質系統</td>
<td>氣體</td>
<td>CEc-Vc-1</td>
<td>氣體基本性質。</td>
<td>1-1 密閉容器內氣體的壓力，是因氣體分子運動，碰撞到器壁而產生。與其他章節合併說明。</td>
</tr>
<tr>
<td>(E)</td>
<td>(Ec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>物質的反應、平衡及製造（J）</td>
<td>CJa-Vc-1</td>
<td>物質反應規律（Ja）</td>
<td>拉瓦節以定量分析方法，驗證質量守恆定律。</td>
<td>1-1 純物質與化學式。</td>
</tr>
<tr>
<td></td>
<td>CJa-Vc-2</td>
<td>化學反應僅為原子的重新排列組合，其個數不變，依此原則即可平衡化學反應方程式。</td>
<td>2-1 化學反應式表示法與係數均衡（觀察法與代數法），不涉及複雜的反應式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJa-Vc-3</td>
<td>莫耳與簡單的化學計量。</td>
<td>3-1 基礎化學計量，以簡單計算為主，不涉及產率與氣體體積計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJa-Vc-1</td>
<td>物質反應規律（Ja）</td>
<td>水溶液中的變化（Jb）</td>
<td>3節</td>
</tr>
<tr>
<td></td>
<td>CJa-Vc-2</td>
<td>溶液的種類與特性。</td>
<td>溶液依溶質大小分為真溶液、膠體溶液及懸浮液。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJa-Vc-3</td>
<td>體積莫耳濃度的表示法。</td>
<td>1-2 膠體溶液的特性（僅說明廷得耳效應）。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJB-Vc-1</td>
<td>水溶液中的變化（Jb）</td>
<td>定量說明物質在水中溶解的程度會受到水溫的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJB-Vc-2</td>
<td>體積莫耳濃度的表示法。</td>
<td>2-1 說明溶解度與溫度的定量關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJB-Vc-3</td>
<td>水溶液中的變化（Jb）</td>
<td>容器與其他物質的定義及常見氧化劑。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Vc-1</td>
<td>氧化還原的廣義定義為：物質失去電子稱為氧化反應；得到電子稱為還原反應。</td>
<td>1-1 以日常生活實例介紹氧化還原反應的定義。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Vc-2</td>
<td>氣化劑與還原劑的定義及常見氧化劑與還原劑。</td>
<td>1-2 不涉及包含氧化數的計算與氧化還原反應的平衡。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Vc-1</td>
<td>氧化還原的廣義定義為：物質失去電子稱為氧化反應；得到電子稱為還原反應。</td>
<td>2-1 可還原其他物質，本身發生氧化反應的物質稱為還原劑；反之則為稱為氧化劑。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Vc-2</td>
<td>氧化劑與還原剤的定義及常見氧化剤與還原剤。</td>
<td>2-2 常見的氧化剤，例如：氧氣、臭氧、雙氧水、次氯酸及氯氣等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Vc-1</td>
<td>氧化還原的廣義定義為：物質失去電子稱為氧化反應；得到電子稱為還原反應。</td>
<td>2-3 常見的還原剤：焦煤與二氧化硫。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Vc-2</td>
<td>氧化剤與還原剤的定義及常見氧化剤與還原剤。</td>
<td>2-4 食品或藥物中常見的還原剤（抗氧化剤）：維生素C。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>酸鹼反應</td>
<td>CJd-Vc-1</td>
<td>水可自解離產生(\text{H}^+)與(\text{OH}^-)。</td>
<td>1-1 水的解離反應。25℃時，([\text{H}^+]\times[\text{OH}^-]=1.00\times10^{-14})，為一定值。</td>
<td>2節</td>
</tr>
<tr>
<td></td>
<td>CJd-Vc-2</td>
<td>根據阿瑞尼斯的酸鹼學說，物質溶於水中，可解離出(\text{H}^+)為酸；可解離出(\text{OH}^-)為鹼。</td>
<td>2-1 阿瑞尼斯的酸鹼學說。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJd-Vc-3</td>
<td>pH＝(-\log[\text{H}^+])，此數值可代表水溶液的酸鹼程度。</td>
<td>3-1 簡介pH值的定義，不涉及複雜計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJd-Vc-4</td>
<td>在水溶液中可幾乎100%解離的酸或鹼，稱為強酸或強鹼；反之則稱為弱酸或弱鹼。</td>
<td>3-2 實驗：酸鹼指示劑。</td>
<td></td>
</tr>
<tr>
<td>化學反應速率與平衡</td>
<td>CJe-Vc-1</td>
<td>定溫時，飽和溶液的溶質溶解度為定值，其溶質溶解與結晶達到平衡。</td>
<td>4-1 電解質依解離程度大小，可分為強電解質與弱電解質。</td>
<td>0.3節</td>
</tr>
<tr>
<td></td>
<td>CJe-Vc-2</td>
<td>物質的接觸面積大小對反應速率之影響。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>有機化合物的性質</td>
<td>CJf-Vc-1</td>
<td>醣類、蛋白質、油脂及核酸的性質與功能。</td>
<td>1-1 醣類、蛋白質、油脂及核酸的組成，不涉及複雜結構。</td>
<td>3節</td>
</tr>
<tr>
<td></td>
<td>CJf-Vc-2</td>
<td>常見的界面活性劑包括肥皂與清潔劑，其組成包含親油性的一端和親水性的一端。</td>
<td>2-1 肥皂和清潔劑的結構與去污原理。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJf-Vc-3</td>
<td>界面活性劑的性質與應用。</td>
<td>3-1 簡介界面活性劑的效應。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 實驗：界面活性劑的效應。</td>
<td></td>
</tr>
<tr>
<td>科學、科技及人文</td>
<td>CMa-Vc-1</td>
<td>化學製造流程對日常生活、社會、經濟、環境及生態的影響。</td>
<td>1-1 以簡單生活實例，簡介化學化學製程的影響，可合併於科學在生活中的應用部分說明。</td>
<td>0.2節</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 建議以課題方式融入探究與實作課程內容探究相關議題。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>科學發展</td>
<td>CMb-Vc-1</td>
<td>近代化學科學的發展，以及不同性別、背景、族群者於其中的貢獻。</td>
<td>1-1 擇例簡介化學科學家之貢獻與研究歷程，並兼顧不同族群、性別與背景。此內容應融入相關章節，不必另成一個單元。</td>
<td>0.5 節</td>
</tr>
<tr>
<td>的歷史</td>
<td>CMb-Vc-2</td>
<td>未來科學的發展。</td>
<td>2-1 介紹化學與生活之相關性，帶給人類、地球之影響，及化學的未來展望。</td>
<td></td>
</tr>
<tr>
<td>(Mb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>科學在生</td>
<td>CMc-Vc-1</td>
<td>水的處理過程。</td>
<td>1-1 介紹淨化、消毒及軟化等水的處理過程。</td>
<td>1.5 節</td>
</tr>
<tr>
<td>活中</td>
<td>CMc-Vc-2</td>
<td>生活中常見的藥品。</td>
<td>2-1 介紹常用胃藥、消炎劑及止痛劑。</td>
<td></td>
</tr>
<tr>
<td>的應用</td>
<td>CMc-Vc-3</td>
<td>化學在先進科技發展的應用。</td>
<td>3-1 以奈米碳管與二氧化鈦光觸媒為例，不涉及結構說明。</td>
<td></td>
</tr>
<tr>
<td>(Mc)</td>
<td>CMc-Vc-4</td>
<td></td>
<td>3-2 建議以課題方式融入探究與實作課程內容。</td>
<td></td>
</tr>
<tr>
<td>環境汙染</td>
<td>CMe-Vc-1</td>
<td>酸雨的成因、影響及防治方法。</td>
<td>• 可融入空氣、水溶液及土壤等日常生活的主題。</td>
<td></td>
</tr>
<tr>
<td>與防治</td>
<td>CMe-Vc-2</td>
<td>全球暖化的成因、影響及因應方法。</td>
<td>• 實例應簡明扼要。</td>
<td></td>
</tr>
<tr>
<td>(Me)</td>
<td>CMe-Vc-3</td>
<td>臭氧層破洞的成因、影響及防治方法。</td>
<td>• 可提及PM2.5、酸雨及光煙霧等大氣汙染。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMe-Vc-4</td>
<td>工業廢水的影響與再利用。</td>
<td>• 著重各種汙染防治概念的培養。</td>
<td></td>
</tr>
<tr>
<td>源與永續</td>
<td>CNa-Vc-1</td>
<td>永續發展在於滿足當代人之需求，又不危及下一代之發展。</td>
<td>• 建議以課題方式融入探究與實作課程內容探究相關議題。</td>
<td></td>
</tr>
<tr>
<td>發展</td>
<td>CNa-Vc-2</td>
<td>將永續發展的理念應用於生活中。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>CNa-Vc-3</td>
<td>水資源回收與再利用。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>與資源的</td>
<td>CNa-Vc-4</td>
<td>水循環與碳循環。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>利用</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>能源的開</td>
<td>CNc-Vc-1</td>
<td>新興能源與替代能源在臺灣的發展現況。</td>
<td>• 簡介風力、太陽能等新興能源在臺灣的發展的現況，實例應簡明扼要。</td>
<td></td>
</tr>
<tr>
<td>發與利用</td>
<td></td>
<td></td>
<td>• 建議以課題方式融入探究與實作課程內容。</td>
<td></td>
</tr>
<tr>
<td>(Nc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. 普通型高級中等學校加深加廣選修課程

普通型高級中等學校加深加廣選修化學為 10 學分，內容規劃如下：

<table>
<thead>
<tr>
<th>科目</th>
<th>課程名稱</th>
<th>學分</th>
</tr>
</thead>
<tbody>
<tr>
<td>選修化學</td>
<td>物質與能量</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>物質構造與反應速率</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>化學反應與平衡一</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>化學反應與平衡二</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>有機化學與應用科技</td>
<td>2</td>
</tr>
</tbody>
</table>

以下學習內容說明係根據課程學分依序說明，包括主題、次主題、學習內容、學習內容說明、參考節數等五項，教材編輯時，可統整其內容自訂篇、章、節等順序或名稱，以為編撰之綱要。

課程名稱：物質與能量

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質的反應、平衡及製造</td>
<td>CJa-Va-1</td>
<td>化學反應牽涉原子間的重組，並遵守質量守恆、原子不滅、電荷守恆及能量守恆。</td>
<td>均衡化學反應式：氧化數法與半反應法。</td>
<td>10 節</td>
</tr>
<tr>
<td>(J)</td>
<td>CJa-Va-2</td>
<td>化學反應與化學程序的產率。</td>
<td>產率計算與限量試劑。</td>
<td></td>
</tr>
<tr>
<td>能量的形式、轉換及流動</td>
<td>CBa-Va-1</td>
<td>化學能與其他形式能量之間的轉換。</td>
<td>1-1 介紹電池中的能量變化是由化學能轉變成電能；電解電池中的能量變化是由電能轉變成化學能。</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td>CBa-Va-2</td>
<td>影響反應熱的因素包括：溫度、壓力、反應物的量及狀態。</td>
<td>2-1 介紹標準反應熱的意義，並說明溫度、壓力、反應物的量及狀態會影響反應熱的值。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBa-Va-3</td>
<td>反應熱的加成性遵守赫斯定律。</td>
<td>2-2 實驗：測量強酸強鹼之中和熱及硝酸銨溶於水之熱量變化。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBa-Va-4</td>
<td>常見的反應熱種類包括莫耳燃燒熱與莫耳生成熱。</td>
<td>3-1 利用赫斯定律，由已知的熱反應方程式</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>物質系統</td>
<td>氣體 (E)</td>
<td>CEc-Va-1 理想氣體粒子模型。</td>
<td>執出未知反應的反應熱。</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEc-Va-2 氣體的壓力。</td>
<td>說明莫耳燃燒熱與莫耳生成熱的定義。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEc-Va-3 理想氣體三大定律與理想氣體方程式。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEc-Va-4 道耳頓分壓定律。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEc-Va-5 理想氣體與真實氣體。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>物質的結構與功能</td>
<td>物質的分離與鑑定 (Ca)</td>
<td>CCa-Va-1 常見物質的鑑定方法與原理。</td>
<td>1-1 以粒子模型說明氣體體積由氣體粒子的運動範圍決定與氣體粒子之間的距離會隨溫度改變而改變。氣體模型論則由物理熱學章節說明。</td>
<td>10 節</td>
</tr>
<tr>
<td>(C)</td>
<td></td>
<td></td>
<td>2-1 氣體壓力可由開口式壓力計與閉口式壓力計測量。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 理想氣體三大定律:波耳定律、查理定律及亞佛加德定律，不涉及複雜計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 以三大定律發展出理想氣體方程式 (PV=nRT)。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-3 以科學史融入理想氣體方程式的發展。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 莫耳分率與分壓。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-2 混合氣體的分壓，不涉及複雜計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 理想氣體與真實氣體之間的差異。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>理想氣體與真實氣體的差異。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>以電腦模擬幫助學生建立理想氣體粒子模型與微觀概念。可以示範實驗說明三大定律。</td>
<td></td>
</tr>
<tr>
<td>物質的組成與特性</td>
<td>物質的形態、性質及分類 (Ab)</td>
<td>CAb-Va-3 液晶的形態與性質</td>
<td>3-1 介紹液晶的特性及其應用，僅說明三相以外的形態，不涉及複雜結構及原理。</td>
<td>12 節</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>物質的反應、平衡及製造 (J)</td>
<td>水溶液中的變化 (Jb)</td>
<td>Cjb-Va-1 莫耳分率的表示法。</td>
<td>1-1 莫耳分率可依章節安排，與「道耳頓分壓定律」或「拉午耳定律」合併說明。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cjb-Va-2 溫度與壓力對氣體溶解度的影響。</td>
<td>2-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cjb-Va-3 離子之沉澱、分離及確認。</td>
<td>2-2 說明亨利定律與其適用範圍。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cjb-Va-4 拉午耳定律與理想溶液。</td>
<td>3-1 離子之沉澱、分離及確認，可與「溶解度平衡與溶度積的關係」章節合併說明。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cjb-Va-5 依數性質：非揮發性物質溶於水，使得蒸氣壓下降、沸點上升、凝固點下降及滲透壓增加。</td>
<td>3-2 以常見化合物的溶解情形歸納說明離子化合物的沉澱趨勢。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-3 說明如何利用不同鹽類的溶解度差異，將數種鹽類以逐次沉澱的方式，加以分離及確認。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 說明水的相變化、蒸氣壓及相對溫度。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-2 以粒子模型說明拉午耳定律。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-3 示範實驗：理想溶液與非理想溶液體積的差異。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 電解質與非電解質之非揮發性物質溶於水後，沸點和熔點的變化，不涉及計算，僅說明定量溶劑中，沸點上升量、熔點下降量的大小及粒子數成正比關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-2 實驗：凝固點下降的現象。不涉及分子量的測定計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-3 滲透壓的計算以強電解質作為實例，不以部分解離之物質作教學內容。並以日常生活實例說明滲透與逆滲透的現象。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>物質的組成與特性 (A)</td>
<td>物質組成與元素的週期性 (Aa)</td>
<td>CAa-Va-1 原子的結構是原子核在中間，電子會存在於不同能階。</td>
<td>1-1 僅以軌道模型說明主殼層能階、副殼層及軌域。</td>
<td>10節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAa-Va-2 波耳氫原子模型解釋氫原子光譜與芮得柏方程式。</td>
<td>1-2 以科學史融入原子模型的特性與演變。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAa-Va-3 多電子原子的電子與其軌域，可以四種量子數加以說明。</td>
<td>2-1 不涉及複雜計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAa-Va-4 原子的電子組態的填入規則，包括包立不相容原理、洪德定則及遞建原理。</td>
<td>2-2 以具體模型或模擬動畫幫助學生理解抽象的量子數與軌域之間的關係。不涉及量子力學。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAa-Va-5 元素的電子組態和性質息息相關，且可在週期表呈現出其週期性變化。</td>
<td>3-1 建立科學模型與電子組態填入規則之系統思考方式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>物質的形態、性質及分類 (Ab)</td>
<td>CAb-Va-4 週期表中的分類。</td>
<td>3-2 統整共同階段所學習的元素的規律性與元素的週期性，連結元素的電子組態並以圖像建立介紹元素在週期表的週期性變化 (原子半徑、離子半徑、游離能及電負度)。</td>
<td></td>
</tr>
<tr>
<td>物質的組成與特性 (A)</td>
<td>物質的形態、性質及分類 (Ab)</td>
<td>CCb-Va-1 化學鍵的特性會影響物質的性質。</td>
<td>4-1 由元素在週期表中之位置，加以分類。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCb-Va-2 混成軌域與價鍵理論：原子結合的方式與原理。</td>
<td>4-2 介紹共價網狀固體與其性質。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCb-Va-3 價殼層電子對互斥原理與分子形</td>
<td>5-1 舉例說明離子晶體、金屬晶體及分子化合物其化學鍵分別為離子鍵、金屬鍵及共價鍵，因為鍵結方式不同，這三類物質的性質也不同，不涉及晶體的堆積方式與密度計算。</td>
<td></td>
</tr>
<tr>
<td>物質的結構與功能 (C)</td>
<td>物質的結構與功能 (Cb)</td>
<td>CCb-Va-2 混成軌域與價鍵理論：原子結合的</td>
<td>1-1 介紹共價網狀固體與其性質。</td>
<td>10節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCb-Va-3 價殼層電子對互斥原理與分子形</td>
<td>1-2 舉例說明離子晶體、金屬晶體及分子化合物其化學鍵分別為離子鍵、金屬鍵及共價鍵，因為鍵結方式不同，這三類物質的性質也不同，不涉及晶體的堆積方式與密度計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCb-Va-3 價殼層電子對互斥原理與分子形</td>
<td>2-1 混成軌域與價鍵理論以常見的C、N、O的化合物為主。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCb-Va-3 價殼層電子對互斥原理與分子形</td>
<td>2-2 σ 筆與 π 鍵。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>物質的反應、平衡及製造（J）</td>
<td>化學反應速率與平衡（Je）</td>
<td>CJe-Va-1 反應速率定律式。</td>
<td>1-1 以實例說明反應速率常數與反應速率定律式意義。</td>
<td>10節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJe-Va-2 反應能量圖。</td>
<td>1-2 以零級、一級為主，不涉及複雜計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJe-Va-3 碰撞學說解釋影響反應速率的因素。</td>
<td>1-3 半生期意義與應用。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJe-Va-4 催化劑與酵素的性質及其應用。</td>
<td>1-4 實驗:秒錶反應。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-1 以「反應能量圖」說明活化能、活化複合體及反應熱的概念。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-2 「反應機構」和「速率決定步驟」不涉及多步驟的複雜反應。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 以碰撞理論說明濃度、壓力及接觸面積、溫度對反應速率的影響，不涉及阿瑞尼士方程式的計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 以常見實例說明催化劑與酵素的性質與應用。</td>
<td></td>
</tr>
</tbody>
</table>

課程名稱：化學反應與平衡一

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質的反應、平衡及製造（J）</td>
<td>化學反應速率與平衡（Je）</td>
<td>CJe-Va-5 定溫時，水的遊離速率會等於結合速率，稱為遊離平衡。</td>
<td>5-1 水的遊離平衡與「水的自解離」部分合併說明。</td>
<td>15節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJe-Va-6 勒沙特列原理。</td>
<td>6-1 說明勒沙特列原理與其在工業上的應用。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJe-Va-7 平衡常數的定義與計算。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>CJe-Va-8</td>
<td>溶解度平衡與溶度積的關係。</td>
<td>6-2 實驗：平衡的移動（勒沙特列原理）。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-1 說明可逆反應與動態平衡的概念。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-2 平衡定律式、平衡常數及反應器的意義與應用，不涉及自由能(ΔG)與複雜平衡常數的計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-3 實驗：平衡常數。</td>
<td></td>
</tr>
<tr>
<td>水溶液中的變化（Jb）</td>
<td>Cjb-Va-3</td>
<td>離子之沉澱、分離及確認。</td>
<td>8-1 溶度積的概念與其應用，不涉及複雜系統的計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8-2 同離子效應的概觀與其應用，不涉及複雜系統的計算。</td>
<td></td>
</tr>
<tr>
<td>物質的反應、平衡及製造（Jd）</td>
<td>CJd-Va-1</td>
<td>酸與鹼的命名。</td>
<td>1-1 酸與鹼的命名原則。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJd-Va-2</td>
<td>布-洛酸鹼學說。</td>
<td>2-1 布・洛酸鹼學說，並說明共軛酸鹼對的概念。由反應的趨勢，比較方程式兩側酸（鹼）的強弱。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJd-Va-4</td>
<td>弱酸或弱鹼的游離常數：酸鹼的Kₐ、Kₐ。</td>
<td>4-1 弱酸（鹼）的解離反應式之平衡常數，及其與酸（鹼）的強弱之關係，不涉及多質子酸與混合酸的複雜計算。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJd-Va-5</td>
<td>酸鹼指示劑的原理與應用。</td>
<td>5-1 酸鹼指示劑之選擇與應用。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJd-Va-6</td>
<td>酸鹼滴定原理與定量分析。</td>
<td>6-1 酸鹼滴定之原理、計算及滴定曲線之意義。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJd-Va-7</td>
<td>鹽的種類與性質。</td>
<td>6-2 實驗：酸鹼滴定。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJd-Va-8</td>
<td>同離子效應與緩衝溶液的定義、製備及功用。</td>
<td>7-1 鹽可分為正鹽、酸式鹽及鹼式鹽，及其命名。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-2 鹽類水溶液的酸鹼性，不涉及水解的計算。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>物質的反應、平衡及製造</td>
<td>CJC-Va-1</td>
<td>常見氧化劑與還原劑的半反應式。</td>
<td>1-1 以半反應式說明氧化還原反應。</td>
<td>15節</td>
</tr>
<tr>
<td></td>
<td>CJC-Va-2</td>
<td>氧化數的規則與應用。</td>
<td>1-2 說明氧化數的定義與判斷規則。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Va-3</td>
<td>氧化還原反應與均衡。</td>
<td>1-3 以氧化數的變化，介紹常見的氧化還原反應式。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Va-4</td>
<td>氧化還原滴定原理與定量分析。</td>
<td>1-3-2 由自發反應的方向，判斷氧化劑與還原劑的強弱。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Va-5</td>
<td>電化電池的原理。</td>
<td>4-1 說明氧化還原滴定的原理，藉此分析未知物的濃度或含量。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Va-6</td>
<td>標準還原電位與電化電池的動勢。</td>
<td>4-2 實驗：氧化還原反應。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Va-7</td>
<td>常見電池的原理與設計。</td>
<td>4-3 實驗：氧化還原滴定。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CJC-Va-8</td>
<td>電解與電鍍的原理。</td>
<td>5-1 以伏打電池和鋅銅電池為例，說明電化電池的原理與表示方法。</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文</td>
<td>CMc-Va-1</td>
<td>氫氣的性質、製取及用途。</td>
<td>8-1 僅介紹氫氣的性質、製取及用途。</td>
<td>12節</td>
</tr>
<tr>
<td></td>
<td>CMc-Va-2</td>
<td>常見金屬及重要的化合物之製備、性質及用途。</td>
<td>2-1 以生活中的重要實例介紹主族金屬元素（鈉、鎂、鋁）與電解法製備鋁。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>(M)</td>
<td>CMc-Va-3</td>
<td>常見合金之性質與用途。</td>
<td>2-2 以生活中的重要實例介紹過渡元素（鐵）。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMc-Va-4</td>
<td>常見非金屬與重要的化合物之製備、性質及用途。</td>
<td>2-3 以葉綠素和血紅素介紹配位化合物，不涉及混成軌域與結構。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMc-Va-5</td>
<td>生活中常見之合成纖維、合成塑膠及合成橡膠之性質與應用。</td>
<td>2-4 示範實驗：鐵離子與草酸根形成的錯合物。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMc-Va-6</td>
<td>先進材料。</td>
<td>3-1 介紹 K 金、鋁合金、銅等合金的性質與用途。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMc-Va-7</td>
<td>奈米尺度。</td>
<td>4-1 以生活中常見之範例介紹非金屬元素（碳、氫、氧、硅）重要化合物與用途。</td>
<td></td>
</tr>
</tbody>
</table>

課程名稱：有機化學與應用科技

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質的結</td>
<td>物質的結</td>
<td>同分異構物的結構與功能。</td>
<td>1-1 結構異構物。</td>
<td>24節</td>
</tr>
<tr>
<td>構與功能</td>
<td>構與功能</td>
<td>(Cc)</td>
<td>1-2 僅介紹烯烴與環烷的順反異構物。</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>CCb-Va-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>物質的組</td>
<td>物質的形</td>
<td>不同的官能基會影響有機化合物的性質。</td>
<td>2-1 介紹各種烴、醇、烴、酸、酮、酸、酯、胺與酯胺的官能基，與其特性，不涉及化學反應。</td>
<td></td>
</tr>
<tr>
<td>成與特性</td>
<td>態、性質</td>
<td></td>
<td>2-2 實驗：以電腦模擬或實體模型觀察有機分子的結構。</td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>及分類</td>
<td></td>
<td>2-3 示範實驗：有機化合物的一般性質（揮發性、溶解度等）。</td>
<td></td>
</tr>
<tr>
<td>(Ab)</td>
<td>CAb-Va-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>物質的反</td>
<td>有機化合物</td>
<td>有機化合物組成。</td>
<td>1-1 元素分析與有機化合物的組成。</td>
<td></td>
</tr>
<tr>
<td>應、平衡</td>
<td>有機化合物的命名、結構及官能基的檢驗與其用途—烴、卤化烴、醇、</td>
<td></td>
<td>2-1 有機化合物的中文系統命名法，但主鍵不超過六個碳，環烷取代基以甲基為限</td>
<td></td>
</tr>
<tr>
<td>及製造</td>
<td>酯的性質、製備</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>(J)及反應</td>
<td>(Jf)</td>
<td>酚、醚、酮、醛、有機酸、酯、胺及醯胺。</td>
<td>且不超過兩個。</td>
<td>2-2</td>
</tr>
<tr>
<td>CJf-Va-3</td>
<td>常見有機化合物的重要反應。</td>
<td>簡介各官能基的結構、特性及用途。</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>CJf-Va-4</td>
<td>常見聚合物的一般性質與分類。</td>
<td>3-1</td>
<td>示範實驗：常見官能基的檢驗。</td>
<td></td>
</tr>
<tr>
<td>CJf-Va-5</td>
<td>常見聚合物的結構與製備。</td>
<td>3-2</td>
<td>實驗：醇、醛及酮的性質。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>常見聚合物的重要反應。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>常見聚合物的一般性質與分類。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>常見聚合物的結構與製備。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

示範實驗：
- 酚：簡單的製備方法、加成反應（例如：氫化、鹵化、HX及H2O）及聚合反應（僅以乙烯、氯乙烯及苯乙烯為例）。
- 醇：電石製備乙炔和加成反應（僅介紹氫化及鹵化）。
- 脂肪酸：僅說明阿斯匹靈的製程與用途。
- 芳香族化合物及烯類（C=C）的差異。
- 水解反應。
- 酯化反應，阿斯匹靈的製程與用途。
- 聚合反應的種類（加成與縮合）。
- 常見聚合物的性質。
- 耐綸、達克綸的結構與製成。
- 天然橡膠、澱粉、纖維素、蛋白質及核酸的結構。
- 配合諾貝爾化學獎說明聚乙炔的結構、性質及用途。
- 可融入「科學在生活中的應用」的章節中說明。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學、科技、社會及人文(M)</td>
<td>科學、技術及社會的互動關係(Ma)</td>
<td>CMa-Va-1 從化學的主要發展方向和產業成果，建立綠色化學與永續發展的觀念，並積極參與科學知識的傳播，促進化學知識進入個人和社會生活。 化學化工技術與社會、法律及倫理相關議題。</td>
<td>• 建議以課題方式融入相關議題。 • 可融入科學在生活中的應用，不必另成一單元。</td>
<td>5節</td>
</tr>
<tr>
<td></td>
<td>CMa-Va-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>科學發展的歷史(Mb)</td>
<td>CMb-Va-1 化學發展史上的重要事件、相關理論發展及科學家的研究事蹟。 化學概念的形成及發展。</td>
<td>科學发展的內容可融入相關的章節，不必另成一單元。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMb-Va-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMb-Va-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境汙染與防治(Me)</td>
<td>CMe-Va-1 水汙染之檢測方法。</td>
<td>1-1 實驗：水汙染的檢測(濁度、酸鹼度、導電度及溶氧度等)。 • 可融入空氣、水溶液及土壤等日常生活相關的主題。 • 實例應簡明扼要。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMe-Va-2 大氣汙染物之檢測方法。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>資源與永續發展(N)</td>
<td>永續發展與資源的利用(Na)</td>
<td>CNa-Va-1 永續發展理念之應用。 資源保育的有效方法。 廢棄物的創新利用與再製作。</td>
<td>• 可融入科學在生活中的應用，不必另成一單元。 • 建議以課題方式融入相關議題。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CNa-Va-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CNa-Va-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CNa-Va-4 氣循環。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>能源的開發與利用(Nc)</td>
<td>CNc-Va-1 新興能源與替代能源在臺灣發展之可能性與限制。</td>
<td>• 建議以課題方式融入相關議題。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（四）地球科學

1. 普通型高級中等學校必修課程

必修課程內容的編排，除延續九九課綱的設計精神外，考量必修授課時數減少，但在全球氣候變遷下，現代公民更需具備地球科學素養。課程內容除與國民中學階段整合，著重於不同學習階段的連貫，亦增補「永續發展與資源利用」與「氣候變遷之影...
響與調適」兩個跨科、跨領域的次主題，希望學生能從課程中習得思辨能力，在面對未來的氣候變遷時，能有較佳的應對能力。

再者，教學時，應適當擇例簡介科學家之貢獻與研究歷程，並兼顧不同性別、族群或背景；此部分可融入相關章節，不必另成一個單元。本說明旨在進一步闡釋本課程綱要普通型高級中等學校地球科學科的學習內容，在內容編排上，學習內容說明、參考節數已明確列舉各學習內容應教授的範圍，但各主題、次主題之順序，並不代表課程編排順序。

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>物質系統</td>
<td>宇宙與天體 (E)</td>
<td>EEd-Vc-1 我們的宇宙由各種不同尺度的天體所組成，且正在膨脹。</td>
<td>1-1 說明宇宙由各種不同尺度的天體所組成，介紹恆星以下與以上尺度的天體。可以太陽系的組成為例補充說明。僅簡單介紹各天體的尺度與階層關係。</td>
<td>5 輯</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Vc-2 天體的亮度與光度用視星等與絕對星等來表示。</td>
<td>1-2 天文學家發現遠方的星系都遠離我們而去，推知宇宙正在膨脹；目前宇宙形成的學說以霹靂說為主流。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Vc-3 天文觀測可在不同的電磁波段進行。</td>
<td>2-1 以原理說明星等與光度、亮度之間的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEd-Vc-4 恆星的顏色可用來了解恆星的表面溫度。</td>
<td>3-1 僅簡單說明不同電磁波段可觀測到天體不同的面貌，主要是強調除了可見光之外，還需要其他波段的天文觀測。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 以原理說明為主。</td>
<td></td>
</tr>
<tr>
<td>地球環境</td>
<td>組成地球的物質 (Fa)</td>
<td>EFa-Vc-1 由地震波可以協助了解固體地球具有不同性質的分層。</td>
<td>1-1 以地震波速隨深度的變化圖，說明固體地球的分層（地殼、地函、地核、岩石圈、軟流圈）。</td>
<td>3 輯</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Vc-2 固體地球各分層之化學組成與物理狀態不同。</td>
<td>1-2 藉由S波無法通過液態介質的特性，推測與外地核的存在與性質。（不涉及公式推導）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Vc-3 大氣溫度與壓力會隨高度而變化。</td>
<td>1-3 藉由地震波波速的變化，推測軟流圈與岩石圈的差異性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Vc-4 海洋表水溫度主要受降水、蒸發及河川注入等因素影響。</td>
<td>2-1 可以引用物理概念說明介質的性質（物理的狀態與化學的組成）會影響到波速。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Vc-5 海水的溫度隨深度和水平分布而變化。</td>
<td>2-2 主要強調物理性質分層，可提及化學性</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>由地球觀察恆星的視運動可以分成周日運動與周年運動。</td>
<td>1-1 以原理說明為主，可包含天球的概念，但不涉及天球坐標。</td>
<td>2節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2 周日運動可說明不同緯度地區觀測的差別。</td>
<td>1-3 周年運動應以定性的概念說明為主。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>由地球學家以太陽星雲學說來解釋太陽系的起源和形成。太陽系是由太陽、行星、衛星、小行星和彗星等天體組成。</td>
<td>1-1 說明太陽系的形成來自從分子雲塌縮而成的太陽星雲即可。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2 關於太陽星雲學說的演化過程、學理支持及觀察證據等留待選修課程教學。</td>
<td>2-1 說明地球與太陽的距離適中，具備有合適發展生命的環境與地表溫度。說明地球在太陽系中能有別於其他類地行星，利於生命存在的原因包括適合的氣溫、液態水的存在、大氣層及地球磁層的保護等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-3 說明地球誕生初期到現今的大氣演化。</td>
<td>3-1 說明因為海洋的形成與生物的誕生，而改變大氣的組成。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-2 說明因為海洋的形成與生物的誕生，而改變大氣的組成。</td>
<td>3-2 說明因為海洋的形成與生物的誕生，而改變大氣的組成。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>说明某些生物在地球歷史上具有特定的生存年代，因此地層中的化石可幫助科學家推測地層形成的相對年代。</td>
<td>1-1 說明某些生物在地球歷史上具有特定的生存年代，因此地層中的化石可幫助科學家推測地層形成的相對年代。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>利用岩石中的化石與放射性同位素定年法，可幫助推論地層的絕對年代。</td>
<td>2-1 說明利用放射性元素衰變具週期性的特殊性質以及放射性同位素定年法可幫助科學家推測地層的絕對年代。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>質分層。可說明物理機制，但不做公式推導。</td>
<td>3-1 許造成溫度與壓力垂直分布的基本原因。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>不談鹽度的垂直分布。</td>
<td>4-1 不談鹽度的垂直分布。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>可提造成海水的溫度隨深度與水平分布的基本原因。</td>
<td>5-1 可提造成海水的溫度隨深度與水平分布的基本原因。</td>
<td></td>
</tr>
<tr>
<td>異常的起源與演變</td>
<td></td>
<td>說明某些生物在地球歷史上具有特定的生存年代，因此地層中的化石可幫助科學家推測地層形成的相對年代。</td>
<td>1-1 說明某些生物在地球歷史上具有特定的生存年代，因此地層中的化石可幫助科學家推測地層形成的相對年代。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2 說明地球與太陽的距離適中，具備有合適發展生命的環境與地表溫度。說明地球在太陽系中能有別於其他類地行星，利於生命存在的原因包括適合的氣溫、液態水的存在、大氣層及地球磁層的保護等。</td>
<td>2-1 說明地球與太陽的距離適中，具備有合適發展生命的環境與地表溫度。說明地球在太陽系中能有別於其他類地行星，利於生命存在的原因包括適合的氣溫、液態水的存在、大氣層及地球磁層的保護等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-3 周年運動應以定性的概念說明為主。</td>
<td>3-1 說明地球誕生初期到現今的大氣演化。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-2 說明因為海洋的形成與生物的誕生，而改變大氣的組成。</td>
<td>3-2 說明因為海洋的形成與生物的誕生，而改變大氣的組成。</td>
<td></td>
</tr>
<tr>
<td>異常的形成</td>
<td></td>
<td>說明某些生物在地球歷史上具有特定的生存年代，因此地層中的化石可幫助科學家推測地層形成的相對年代。</td>
<td>1-1 說明某些生物在地球歷史上具有特定的生存年代，因此地層中的化石可幫助科學家推測地層形成的相對年代。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>變動的地球（I）</td>
<td>地表與地殼的變動（Ia）</td>
<td>Ela-Vc-1 開學家曾經提出大陸漂移、海底擴張及板塊構造等主要學說，來解釋變動中的固體地球。</td>
<td>1-1 可以科學史的方式說明三種學說的進程，展現科學知識，常需要許多證據與學說的累積，才能逐漸建立模型。</td>
<td>4節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ela-Vc-2 板塊邊界可分為聚合、張裂及錯動三大類型。</td>
<td>1-2 說明板塊構造學說可幫助了解目前已觀測的現象。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ela-Vc-3 板塊邊界有各種不同的地質作用與岩漿活動。</td>
<td>2-1 說明依板塊間的相對運動方式將板塊邊界分為三大類型。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ela-Vc-4 由地質構造與震源分布等特徵，可推論臺灣位於聚合型板塊邊界。</td>
<td>2-2 三大類型的板塊分界，可圖示與舉例說明。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>天氣與氣候變化（Ib）</td>
<td>Elb-Vc-1 一定氣壓下，氣溫越高，空氣所能容納的水氣含量越高。</td>
<td>3-1 可舉例說明，三種板塊邊界在岩漿活動、變質作用、地質構造、震源分布等的不同。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Vc-2 當水氣達到飽和時，多餘的水氣會凝結或凝固。</td>
<td>3-2 不介紹火山噴發的形態。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Vc-3 空氣中的水氣量可以用溼度來表示。</td>
<td>4-1 教學重點在利用臺灣的地質構造與震源分布等證據，推論臺灣位於聚合型板塊邊界，不介紹關於臺灣地體構造模型裡太複雜或還未有定論的細節。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Vc-4 空氣上升時會因為膨脹而降溫。</td>
<td>4-2 可舉例說明臺灣附近的兩個隱沒帶。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Vc-5 大氣的水平運動主要受氣壓梯度力、科氏力和摩擦力的影響。</td>
<td>6-1 以飽和水氣壓曲線圖，說明飽和水氣含量與氣溫之間的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-2 不涉及飽和和蒸發。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-1 可以舉日常生活中的例子來說明，當一定量空氣中水氣達到飽和時，多餘的水分便會以液體或固體的形式存在。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-2 可說明露點的意義。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 介紹相對與絕對溼度。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 可運用飽和水氣壓曲線說明相對溼度。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>EIb</td>
<td>Vc-6</td>
<td>天氣圖是由各地氣象觀測資料繪製而成，用以分析天氣。</td>
<td>3-3 可設計實作活動，利用乾濕球溫度計測量相對溫度。</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Vc-7</td>
<td>大氣與海洋的交互作用會影響天氣，造成氣候變化，例如：聖嬰現象。</td>
<td>4-1 說明當空氣上升，溫度下降，可能導致水汽達到飽和而形成雲霧。空氣的上升運動是大氣成雲致雨的重要機制，不提大氣穩定度。</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 定性介紹氣壓梯度力、科氏力及摩擦力的意義，並簡單說明各力的大小和方向。不談公式及運算。</td>
<td>5-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-3 說明地面高低氣壓的幅合、幅散及天氣狀態。</td>
<td>6-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-1 說明由天氣圖中等壓線的分布可判讀高低氣壓與主要天氣系統。</td>
<td>6-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-1 說明大氣與海洋的交互作用包含動力、熱力等層面。</td>
<td>7-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-3 無須詳細說明南方震盪等聖嬰指標。</td>
<td>7-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-4 可提供聖嬰現象發生時太平洋赤道區東西兩側的觀測資料，說明聖嬰現象發生時大氣與海洋的主要狀態。</td>
<td>3節</td>
</tr>
<tr>
<td>海水的運動（Ic）</td>
<td>EIc-Vc-1</td>
<td>表面海流受盛行風的影響。</td>
<td>1-1 說明表面海流的成因與盛行風有關。</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-1 可以簡單介紹造成海浪的原因包含：風吹海面、海底山崩、海底地震等，其中最</td>
<td>2-1</td>
</tr>
</tbody>
</table>

| 海水的運動（Ic） | EIc-Vc-2 | 波浪形成的主因為風吹海面，而波浪會影響海岸地形。 | 1-1 說明表面海流的成因與盛行風有關。 | 1-1 |

218
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIc</td>
<td>Vc-3</td>
<td>潮汐的變化受到日地月系統的影響有週期性。</td>
<td>主要為風吹海面。</td>
<td>2-2</td>
</tr>
<tr>
<td>EIc</td>
<td>Vc-4</td>
<td>臺灣海峽的潮流運動隨地點不同而有所差異。</td>
<td>簡單介紹風浪與湧浪，並說明波長越長的波浪能量衰減越慢，傳播距離越遠。</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>可以介紹瘋狗浪及颱風來臨前海邊湧浪的危險性。</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>可以舉例說明波浪對海岸地形的影響。</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>由觀測資料說明曰地月系統對潮汐的影響，月球是造成潮汐變化的主要原因。</td>
<td>4-1</td>
</tr>
<tr>
<td>東夜與季節（Id）</td>
<td>Eld-Vc-1</td>
<td>太陽每日於天空中的位置會随季節而改變。</td>
<td>以本地春分、夏至、秋分、冬至四大節氣的太陽位置為例說明。</td>
<td>1-1 1節</td>
</tr>
<tr>
<td>科學、科技、社會及人文（Md）</td>
<td>EMd-Vc-1</td>
<td>颱風形成有其必要條件與機制。</td>
<td>說明颱風是一個集結龐大能量的天氣系統，生成與維持都是眾多條件的配合才能形成，主要包含溫暖的洋面、足夠的科氏力、大氣環境的配合。</td>
<td>1-1 3節</td>
</tr>
<tr>
<td></td>
<td>EMd-Vc-2</td>
<td>颱風是一個螺旋雲帶結構，中心氣壓最低。</td>
<td>介紹颱風的主要結構，並說明相關的氣壓、風速風向、雨勢的變化。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>EMd-Vc-3</td>
<td>侵臺颱風的路徑主要受太平洋高壓所引導，不同路徑對臺灣各地的風雨影響不同。</td>
<td>建議可用授課近期、印象深刻、颱風資料當作上課的相關案例。</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>EMd-Vc-4</td>
<td>臺灣位在活躍的板塊交界，斷層活動所引發的地震及所導致的災害常造成巨大的損失。</td>
<td>說明侵臺颱風的路徑受到太平洋高壓導引，多呈順時針方向移動，而周邊整體大氣環流的變化，會讓颱風路徑改變。</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明颱風對臺灣各地的影響，除了颱風本身的因素，也要考慮路徑、地形及周圍大氣環流的影響。</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明臺灣與其周邊地區的震源分布特性。</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明地震規模與震度有其代表的意義與</td>
<td>4-2</td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>資源與永續發展（N）</td>
<td>永續發展與資源的利用（Na）</td>
<td>ENa-Vc-1</td>
<td>永續發展對地球與人類的延續有其重要性。</td>
<td>用途。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENa-Vc-2</td>
<td>節用資源與合理開發，可以降低人類對地球環境的影響，以利永續發展。</td>
<td>4-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENa-Vc-3</td>
<td>認識地球環境有助於經濟、生態、文化及政策四個面向的永續發展。</td>
<td>4-4</td>
</tr>
<tr>
<td>氣候變遷之影響與調適（Nb）</td>
<td>ENb-Vc-1</td>
<td>氣候變化有多重時間尺度的特性。</td>
<td>說明既能滿足當代所需又不損害後代的發展方式才能維持永續發展。</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>ENb-Vc-2</td>
<td>冰期與間冰期的氣溫變化及海平面的升降，對全球生物與自然環境會造成影響。</td>
<td>以全球能源資源消耗和蘊藏量統計資料說明資源的有限性。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>ENb-Vc-3</td>
<td>過去主導地球長期的自然氣候變化的原理並無法完全用來解釋近幾十年來快速的氣候變遷情形。根據目前科學證據了解人類活動是主要因素。</td>
<td>討論資源消耗對地球帶來的環境與生態衝擊。</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>ENb-Vc-4</td>
<td>因應氣候變遷的調適有許多面向與方法。</td>
<td>舉例說明各面向的永續發展皆需要深入認識地球環境。</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

僅簡單介紹各面向的調適方法即可，可搭配不同時間尺度的統計圖表說明。
2. 普通型高級中等學校加深加廣選修課程

普通型高級中等學校加深加廣選修地球科學為４學分，內容的編排考量必修授課時數減少，除了將部分九九課綱必修中，較深入、複雜的內容移至選修課程外，亦增加一些較專業的內容，提供對於地球科學有興趣的學生，可以更進一步了解，以利性向探索。課程包含舊課綱必修地球科學上冊內容，以及一些經由橫向協調挪動的國民中學階段舊課綱內容等，依據系統相關性及份量分成兩冊，內容規劃如下：

<table>
<thead>
<tr>
<th>科目</th>
<th>課程名稱</th>
<th>學分</th>
</tr>
</thead>
<tbody>
<tr>
<td>選修地球科學</td>
<td>地質與環境</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>大氣、海洋及天文</td>
<td>2</td>
</tr>
</tbody>
</table>

本說明旨在更進一步闡釋本課程綱要普通型高級中等學校地球科學科的學習內容，在內容編排上，學習內容說明、參考節數已明確列舉各學習內容應教授的範圍，但各主題、次主題之順序，並不代表課程編排順序。

課程名稱：地質與環境

<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>地球環境（F）</td>
<td>組成地球的物質（F）</td>
<td>EFa-Va-1</td>
<td>火成岩形成時岩漿的成分與冷卻速度會影響外觀。</td>
<td>1-1 介紹火成岩不同岩理的特色與其形成條件差異（玻璃質、微晶質、斑晶質、顯晶質）。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-2</td>
<td>不同沉積環境會影響沉積岩組成與顆粒的大小。</td>
<td>1-2 說明岩漿中二氧化矽含量多寡與岩漿流動性、形成之火成岩顏色、密度之差異。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-3</td>
<td>變質岩的形成受原來母岩與變質程度的影響，具有不同的外觀形態。</td>
<td>2-1 介紹沉積岩的成因：風化、侵蝕、搬運、堆積、壓密、膠結等成岩過程。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-4</td>
<td>礦物具有一定的化學成分與物理性質。</td>
<td>2-2 說明碎屑性沉積岩的分類與其形成環境的關係。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-5</td>
<td>礦物種類繁多，但一般岩石中常見的造岩礦物種類有限。</td>
<td>2-3 介紹非碎屑性沉積岩，例如：石灰岩、鹽岩。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-6</td>
<td>主要建材多來自於岩石與其產物。</td>
<td>3-1 說明因壓力的作用，變質岩常見葉理的構造。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFa-Va-7</td>
<td>經由地殼鑽探、不同地球物理探勘方法，可以幫助了解固體地球的結</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>構與成分。</td>
<td>3-2 介紹常見的葉理狀與非葉理狀變質岩及其母岩。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 介紹礦物主要的物理特性：顏色、條痕、硬度、晶形、解理等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 說明地殼的主要組成元素含量百分比。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-2 介紹常見造岩礦物：碳酸鹽類礦物、矽酸鹽類礦物。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-3 說明矽酸鹽類礦物主要可分為鐵鎂質矽酸鹽與長英質矽酸鹽，其密度、熔點、顏色及深度分布上的差異。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-1 介紹常見的石材，例如：花岡岩、安山岩、玄武岩、石灰岩、板岩、大理岩、蛇紋岩。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-2 介紹臺灣各地產的石材與該處地質活動的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-1 說明科學家常用鑽取岩心的方式得知地下的岩性，但目前鑽探深度有限。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-2 說明地球科學家利用不同地球物理探勘方法，了解固體地球結構，可舉例說明不同連線面的發現史，並介紹女性科學家在此主題之貢獻。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-3 說明目前對於更深處的地球成分組成多用隕石成分與地震波傳遞狀況來做出推論。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-3 可設計以下實作活動：</td>
<td>4節</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>（1）三大岩類觀察實驗。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>（2）礦物的物理性質。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-1 介紹地球起源與演變的想法隨文明發展而改變，近代逐漸釐清出大致的輪廓。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-1 介紹幾種解釋地球起源之重要學說的優缺點；並根據目前已知的觀測證據，說明太陽星雲學說廣被接受的原因。</td>
<td></td>
</tr>
</tbody>
</table>

地球的歷史（II）

<p>| | | | 4節 |
| | | 1-1 介紹地球起源與演變的想法隨文明發展而改變，近代逐漸釐清出大致的輪廓。 | |</p>
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>地層與化石（Hb）</td>
<td>EHHa-Va-1</td>
<td>高溫熔融態的原始地球，經過分化分層，形成具層狀結構之固體地球，逐漸冷卻，在釋氣過程中，大氣與海洋隨之演化。</td>
<td>1-2 重在強調科學史演進之邏輯推理過程。</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>EHHa-Va-2</td>
<td>人類透過各種科學方法，了解地球的大小與形狀。</td>
<td>2-1 說明經由鉀鈾等元素在地核中具有極高比例等證據，建立地球分層之模式。</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>EHHa-Va-3</td>
<td>1 這由鐵鎳等元素在地核中具有極高比例等證據，建立地球分層之模式。</td>
<td>2-2 說明固體地球逐漸冷卻釋氣，大氣與海洋及生物隨之演化，並且交互影響，才形塑現今地球。</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 研究不同時期透過各種方法及證據，來了解地球的大小和形狀。</td>
<td>3 研究人類在不同時期透過各種方法及證據，來了解地球的大小和形狀。</td>
<td>3</td>
</tr>
<tr>
<td>變動的地表與地殼的變動（Ia）</td>
<td>EHHb-Va-1</td>
<td>地層中的標準化石，指相化石與地質構造，可輔助了解地層的沉積環境與年代。</td>
<td>1-1 說明標準化石的定義，標準化石可推測地層的沉積年代。</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHHb-Va-2</td>
<td>研究地球歷史的不同方法有不同限制與精確度，地球歷史需要綜合多方面的證據才能提出適當的推論。</td>
<td>1-2 說明指相化石的定義，指相化石可推測生物生存當時的環境。</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-1 說明利用化石與地層記錄研究地球歷史時，會因為地層層序不完整，化石的保存與移置及火成活動或變質作用等影響其精確度。</td>
<td>2-2 說明研究地球歷史需要綜合多方面的證據才能提出適當的推論。</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-1 說明地殼均衡說的基本理論與觀測證據。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-2 說明研究地殼歷史需要綜合多方面的證據才能提出適當的推論。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>可設計以下的實作活動：</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>（1）地殼均衡說基本理論與觀測證據。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>（2）化石的觀察與素描記錄。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-1 說明地殼均衡說的基本理論與觀測證據。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2 介紹地殼均衡說2種常用的理論模型，以及實際狀況與理論模型的異同。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-1 說明各種地質構造與應力之間的關係，從常見的地質構造判讀受力方式。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

223
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EMd-Va-1</td>
<td>山崩、土石流、地質環境及氣象狀況有密切關連。</td>
<td>1-1 說明山崩、土石流的成因非常複雜，包含地層岩性、坡度、植被、降雨及人為作用等。</td>
<td>5節</td>
</tr>
<tr>
<td></td>
<td>EMd-Va-2</td>
<td>水土保持具有防災與減災的功能。可利用野外測勘、遙測及鑽探等技術確定地質敏感區。</td>
<td>1-2 說明臺灣山崩、土石流潛勢區的分布，分析山崩、土石流發生的原因。</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EMd-Va-3</td>
<td>山崩、土石流、地質環境及氣象狀況有密切關連。</td>
<td>2-1 說明水土保持可防治洪水、山崩及土石</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EIa-Va-4</td>
<td>透過野外觀察記錄及分析，建立地質圖等資料，可以幫助了解當地岩層的分布與構造。</td>
<td>3-1 介紹野外地質調查與地球物理觀測的各種方法與基本工具。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIa-Va-5</td>
<td>透過野外地質觀察及儀器度測到的地球物理資料，可以幫助建立臺灣的地體構造模型。</td>
<td>3-2 介紹常見的沉積構造在野外地質調查的用途。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIa-Va-6</td>
<td>透過儀器對地殼變動的監測，可幫助了解板塊相互運動的狀態。</td>
<td>3-3 介紹地質圖的各種元素，說明如何由地質圖與剖面圖解讀岩層的分布與構造。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EIa-Va-7</td>
<td>遙測工具對於地表與地殼的變動提供了更全面的觀測。各種不同工具可幫助了解海底地形與陸地地形在形態及規模的不同。</td>
<td>4-1 可舉例說明。</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EMd-Va-1</td>
<td>山崩、土石流、地質環境及氣象狀況有密切關連。</td>
<td>5-1 可舉例說明。</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EMd-Va-2</td>
<td>水土保持具有防災與減災的功能。可利用野外測勘、遙測及鑽探等技術確定地質敏感區。</td>
<td>6-1 說明各種遙測技術如何幫助了解地表與地殼的變動。</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EMd-Va-3</td>
<td>山崩、土石流、地質環境及氣象狀況有密切關連。</td>
<td>6-2 明白遠測資料與野外地質調查各有其優勢與限制，交互運用將可獲致更好成效。</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EMd-Va-4</td>
<td>水土保持具有防災與減災的功能。可利用野外測勘、遙測及鑽探等技術確定地質敏感區。</td>
<td>7-1 介紹各種不同大陸與海洋探測的方法。</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EMd-Va-5</td>
<td>水土保持具有防災與減災的功能。可利用野外測勘、遙測及鑽探等技術確定地質敏感區。</td>
<td>7-2 介紹現今各種不同探測的方法，得知大陸和海洋地殼的分布與變遷。</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EMd-Va-6</td>
<td>水土保持具有防災與減災的功能。可利用野外測勘、遙測及鑽探等技術確定地質敏感區。</td>
<td>7-3 說明海洋沉積物的來源。</td>
<td></td>
</tr>
<tr>
<td>科學、科技、社會及人文(Md)</td>
<td>EMd-Va-7</td>
<td>水土保持具有防災與減災的功能。可利用野外測勘、遙測及鑽探等技術確定地質敏感區。</td>
<td>7-4 說明海洋鑽探的重要性與重大成果。</td>
<td></td>
</tr>
</tbody>
</table>

透過野外觀察記錄及分析，建立地質圖等資料，可以幫助了解當地岩層的分布與構造。透過野外地質觀測及儀器偵測到的地球物理資料，可以幫助建立臺灣的地體構造模型。透過儀器對地殼變動的監測，可幫助了解板塊相互運動的狀態。遙測工具對於地表與地殼的變動提供了更全面的觀測。各種不同工具可幫助了解海底地形與陸地地形在形態及規模的不同。透過野外觀察記錄及分析，建立地質圖等資料，可以幫助了解當地岩層的分布與構造。透過野外地質觀測及儀器偵測到的地球物理資料，可以幫助建立臺灣的地體構造模型。透過儀器對地殼變動的監測，可幫助了解板塊相互運動的狀態。遙測工具對於地表與地殼的變動提供了更全面的觀測。各種不同工具可幫助了解海底地形與陸地地形在形態及規模的不同。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>資源與永續發展</td>
<td>永續發展與資源的利用</td>
<td>ENa-Va-1 全球水資源的分布不均，取用亦有限制，是人類面臨的重大課題，台灣尤其需要面對。</td>
<td>1-1 除了水資源空間分布的問題之外，可加強說明未來氣候變遷之下，可能趨向短時間劇烈降水與長時間乾旱，以強化水資源的時間配置問題。</td>
<td>2節</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENa-Va-2 水資源的永續經營與利用，除節約用水之外，維護自然生態環境，作好水土保持，才是更積極的做法。</td>
<td>2-1 水資源的管理運用包含節用水資源、防治水源汙染，並需維護自然生態環境，作好水土保持。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENa-Va-3 化石燃料是目前用途最廣且最重要的能源，但地球儲藏量有限，且有破壞全球碳循環平衡的問題。</td>
<td>2-2 可以由迴流與滲透的關係說明水土保持對水資源的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENa-Va-4 新興能源的開發，有機會解決當代能源問題。</td>
<td>3-1 可舉例說明能源消耗與氣溫變化相關性。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENa-Va-5 面對永續發展的問題，可以用社會、經濟及環境等三個面向來共同討論與均衡發展。</td>
<td>4-1 介紹例如：風能、太陽能、海洋能、地熱能等，各種新興能源的基本原理。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-2 以臺灣為例，說明適合開發的新興能源，以及需要克服的困難。</td>
<td></td>
</tr>
</tbody>
</table>
課程名稱：大氣、海洋及天文

<table>
<thead>
<tr>
<th>物質系統 (E)</th>
<th>宇宙與天體 (Ed)</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEd-Va-1</td>
<td>恒星光譜可用以了解恆星的大氣組成與物理性質。</td>
<td>1-1</td>
<td>說明光譜的形成原因與原子或分子的能階躍遷有關，形式上可分成連續光譜、吸收光譜及發射光譜三種。</td>
<td>8節</td>
</tr>
<tr>
<td>EEd-Va-2</td>
<td>地面天文觀測的主要工具是光學望遠鏡與電波望遠鏡。</td>
<td>1-2</td>
<td>說明經由研究恆星光譜譜線可得知恆星大氣的化學組成。</td>
<td></td>
</tr>
<tr>
<td>EEd-Va-3</td>
<td>地面天文觀測會受到諸多地表環境條件的限制。</td>
<td>1-3</td>
<td>說明依觀測的恆星光譜資料，恆星光譜可分類成 OBAFGKM 等型。</td>
<td></td>
</tr>
<tr>
<td>EEd-Va-4</td>
<td>地球上看到的星空係不同時空的疊合，距離愈遠即愈古老。</td>
<td>1-4</td>
<td>可利用科學史，例如：牛頓的分光來說 明。</td>
<td></td>
</tr>
<tr>
<td>EEd-Va-5</td>
<td>星色-星等的關係圖有助於認識恆星</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-1 可以由行政院永續發展委員會提出的臺灣永續發展政策綱領切入，介紹永續發展願景：當代及未來世代均能享有「寧適多樣的環境生態」、「活力開放的繁榮經濟」及「安全和諧的福祉社會」。
5-2 介紹「永續的環境」層面包含大氣、水、土地、海洋、生物多樣性及環境管理等六個面向。
5-3 介紹「永續的社會」層面包含人口與健康、居住環境、社會福利、文化多樣性及災害治救等五個面向，簡單說明即可。
5-4 介紹「永續的經濟」層面包含：經濟發展、產業發展、交通發展、永續能源及資源再利用等五個面向，簡單說明即可。

可設計以下實作活動：
（1）水足跡的介紹與估計。
（2）分析能源消耗與氣溫變化相關性。
（3）碳足跡的介紹與估計。
<table>
<thead>
<tr>
<th>主題</th>
<th>次主題</th>
<th>學習內容</th>
<th>學習內容說明</th>
<th>參考節數</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EEd-Va-6</td>
<td>星的類型與演化。測量天體的距離有助於了解宇宙的大尺度結構。</td>
<td>1-5 可以舉例說明光譜測量在觀測上的應用。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-1 說明地球大氣會吸收特定波段的電磁波。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-2 說明光學望遠鏡的結構主要包含主鏡 (光學系統) 與架臺 (赤道儀及經緯儀)。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-3 說明望遠鏡的功能包含集光力、放大力及解析力等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4 說明電波望遠鏡的特色與優缺點。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-1 說明地面觀測易受天候因素、大氣擾動、大氣吸收及光害的影響。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 可舉例說明因應地面的干擾因素，科學家會把望遠鏡放在高山上或太空中，以及開發新的觀測技術。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-1 說明由天文觀測可看到不同尺度下的宇宙，並解釋電磁波傳遞以光速行進，距離越遠的天體，傳至地球的時間越長。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-2 可利用由哈伯深空區 (Deep fields) 或前緣區 (Frontier fields) 的照片解釋時空的概念。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 說明依照巡天調查時所得到的恆星星等與星色資料，天文學家可繪製成星色-星等圖。星色-星等圖可用以幫助了解具有不同物理化學特性之各類恆星。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-2 藉由星色-星等圖中恆星的分布，說明恆星演化的過程，並說明質量越大的恆星，生命週期越短。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-1 說明天體的距離可經由量測恆星的亮度與光度而推得。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>地球環境</td>
<td>地球與太</td>
<td>EFb-Va-1</td>
<td>以科學史的方式，介紹各文明過去嘗試解釋天體運行與日地關係的各種學說。</td>
<td>4節</td>
</tr>
<tr>
<td></td>
<td>空（Fb）</td>
<td>EFb-Va-2</td>
<td>說明地心說與日心說演進的原因和過程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明人們利用星體在天上運行的規律性定出恆星日、太陽日及朔望月、恆星月等單位。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>說明目前常用的曆法有陰曆、陽曆與陰陽合曆三種，各種曆法各有其規律性。</td>
<td></td>
</tr>
<tr>
<td>變動的地</td>
<td>天氣與氣</td>
<td>Elb-Va-1</td>
<td>說明水的三態變化機制，重點在地球系統為基礎的水循環概念。</td>
<td>8節</td>
</tr>
<tr>
<td>球（I）</td>
<td>候變化</td>
<td>Elb-Va-2</td>
<td>說明不同的降水形式，包含液態降水與固態降水。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>（Ib）</td>
<td>Elb-Va-3</td>
<td>說明蒸發與凝結的過程及在大氣中發生的條件，並介紹大氣的凝結形式除了絕熱冷卻，也有輻射冷卻、混合冷卻等。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Va-4</td>
<td>介紹空氣絕熱上升膨脹冷卻、下沉壓縮增溫的過程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elb-Va-5</td>
<td>介紹大氣穩定度、乾絕熱及溼絕熱狀態。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>不介紹各種狀態的專有名詞，但可說明</td>
<td></td>
</tr>
<tr>
<td>主 題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>海水的運動 (Ic)</td>
<td>Elc-Va-1</td>
<td>溫鹽環流是海洋下層水的流動，由海水的密度差異所驅動，具有傳遞能量與調節氣候的重要功能。</td>
<td>1-1 說明溫鹽環流是因為海水溫度與鹽度的差異導致海水密度的差異，使海水從密度高的地方流向密度低的地方。</td>
<td>7節</td>
</tr>
<tr>
<td></td>
<td>Elc-Va-2</td>
<td>臺灣附近的海流會影響臺灣四季的氣候。</td>
<td>1-2 介紹溫鹽環流會在表層與底層、高緯度及低緯度海域之間流動的情形，帶動熱量的轉移，進而影響氣候。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elc-Va-3</td>
<td>透過觀測資料可以判斷潮汐的不同形態。</td>
<td>2-1 說明臺灣周邊主要洋流的冷暖特性，以</td>
<td></td>
</tr>
<tr>
<td>EIb-Va-6</td>
<td></td>
<td>透過地面觀測與高空觀測、衛星及雷達遙測可以獲得氣象資料。</td>
<td>3-1 介紹常見的大氣垂直運動形態及其降水形式：對流雨、鋒面雨、輻合雨及地形雨。</td>
<td></td>
</tr>
<tr>
<td>EIb-Va-7</td>
<td></td>
<td>透過觀測的氣溫、降水量、風向、風速、相對濕度等和衛星雲圖等紀錄，可以分析天氣系統的變化過程，並提出適當的解釋。</td>
<td>4-1 介紹海風、陸風、山風及谷風的形成機制，並舉例說明對環境及生活的影响。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-1 介紹天氣與其他領域的關係。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-2 建議可舉例說明或讓學生發想或收集資料進行課程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-1 說明地面與高空觀測項目、方法及其限制。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-2 說明各種遙測技術：紅外線雲圖、可見光雲圖、雷達回波圖等之觀測原理，以及這些圖表上呈現的天氣資訊。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-1 介紹觀測資料轉變成天氣資訊的過程。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-2 利用實際氣象資料，舉例說明如何由觀測資料提出的天氣變化過程的解釋。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-3 說明氣象預報資料的解釋有所限制。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-4 建議可進行分組討論。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 可設計以下實作活動：</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) 天氣圖判讀。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) 衛星雲圖判讀。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) 天氣系統預報。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>EIc-Va-4</td>
<td>湊升流能將下層富營養鹽的海水往上層輸送，可以提高該海域的基礎生產力。 透過海洋的探測與遙測，有助於了解海水運動與水文性質的變化。</td>
<td>及這些洋流隨季節的變動情形。經由圖示或資料，從臺灣周邊主要洋流的分布與變動，說明臺灣各地氣候與洋流的關係。</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>EIc-Va-5</td>
<td></td>
<td>2-3 不需特別強調與記憶各種水團的特性。</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-2 從臺灣沿海各地的潮汐現象，簡單介紹幾種潮汐分類。</td>
<td>3-2</td>
</tr>
<tr>
<td>晝夜與季節 (Id)</td>
<td>Eld-Va-1</td>
<td>不同緯度的晝夜長短會隨季節變化。</td>
<td>4-1 說明湊升流的形成原因。</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>Eld-Va-2</td>
<td>二十四節氣依太陽在天球上的位置</td>
<td>4-2 說明營養鹽在海洋垂直方向的分布情形，解釋湊升流的出現與營養鹽、基礎生產力分布的關係。</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-2 介紹現代海洋遙測的項目，例如：海表面高度測量、海表面溫度測量、海表面雷達探測等。</td>
<td>5-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5-3 可從實際案例或資料說明海水運動的情形。</td>
<td>5-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・可設計以下實習活動：</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>（1）不同溫度、不同鹽度的水之混合實驗（觀察密度流）。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>（2）溫鹽圖的繪製與判讀。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>（3）臺灣各地潮汐現象的判讀。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>（4）臺灣海岸地區歷年航照與衛星影像圖之比較。</td>
<td></td>
</tr>
<tr>
<td>主題</td>
<td>次主題</td>
<td>學習內容</td>
<td>學習內容說明</td>
<td>參考節數</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>資源與永續發展（N）</td>
<td>氣候變遷之影響與調適（Nb）</td>
<td>ENb-Va-1</td>
<td>各種不同的氣候變遷模式的研究，說明單純自然因素和加入人為因素之後的推估。</td>
<td>1-1 透過觀測、理論研究及模擬，可增加對氣候系統變化的了解。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENb-Va-2</td>
<td>氣候變遷的推估與未來衝擊充滿了不確定性。</td>
<td>2-1 各種推估模式（包括氣候變化模式、數理統計）都有其限制和不確定性。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENb-Va-3</td>
<td>全球各地所發生的氣候變遷在程度與類型上是不一樣的。</td>
<td>2-2 社會經濟發展也有不確定性，但人類應適度減少對自然環境的干擾。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENb-Va-4</td>
<td>人類對地球環境變遷的因應與調適有可能避免災害發生。</td>
<td>3-1 可提供各地海平面上升與降水量等推估模式，比較不同區域因氣候變遷造成不同的影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-2 透過不同推估模式說明臺灣地區因氣候變遷所產生的可能影響。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4-1 說明面對氣候變遷，不同背景的人所採取的個人行動和國家整體政策方向。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4-2 提出環境管理的概念，包含污染防治、自然保育及善用資源等面向。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4-3 由於氣候變遷導致天然災害發生的頻率與規模均有增加的趨勢，災害性天氣變化加遽，因此政府須建立防災減災的策略。</td>
</tr>
</tbody>
</table>